A systematic analysis of scan matching techniques for localization in dense orchards

dc.contributor.authorGuevara, Javier
dc.contributor.authorGené-Mola, Jordi
dc.contributor.authorGregorio, Eduard
dc.contributor.authorAuat Cheein, Fernando A.
dc.date.accessioned2024-10-30T17:12:08Z
dc.date.available2024-10-30T17:12:08Z
dc.date.issued2024-10-21
dc.date.updated2024-10-30T17:12:09Z
dc.description.abstractIn recent years, different methods have been studied to determine machinery position within a grove, as an alternative for complementing GNSS (global navigation satellite system) information in cases where GNSS signal is occluded. Such a situation can be observed when agricultural machinery travels under dense foliage or on the slopes of mountains. Scan matching techniques arise as a possible solution for localizing the machinery, complementing the absence of the GNSS signal when necessary. However, since key points are difficult to obtain in heterogeneous, unstructured and non-rigid environments (such as orchard plants), the performance of scan matching techniques often decreases in agricultural environments. This paper suggests dividing the point clouds into horizontal and vertical segments to improve the performance of scan-matching methods in orchards. It also examines the best way for registered frames to overlap. We validate the analysis with extensive experimentation in a Fuji apple orchard. The results show that the cumulative localization error in scan matching techniques can be notoriously decreased with selective parts of the orchard, by up to 60%. The experimentation performed herein suggests that the proposed methodology can complement the GNSS navigation in a middle-long path.
dc.description.sponsorshipThis work was partly funded by ANID FB0008, PIIC 030/2018 DGIIP-UTFSM Chile, the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00). This work is also part of the DIGIFRUIT project (grant TED2021-131871B-I00) funded by MICIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. The Spanish Ministry of Education is thanked for Mr. J. Gené's pre-doctoral fellowships (FPU15/03355).
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.1016/j.atech.2024.100607
dc.identifier.idgrec034875
dc.identifier.issn2772-3755
dc.identifier.urihttps://repositori.udl.cat/handle/10459.1/466828
dc.language.isoeng
dc.publisherElsevier
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de InvestigaciĂ³n CientĂ­fica y TĂ©cnica y de InnovaciĂ³n 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/
dc.relation.isformatofReproducciĂ³ del document publicat a: https://doi.org/10.1016/j.atech.2024.100607
dc.relation.ispartofSmart Agricultural Technology, 2024, vol. 9 (2024), num. 100607
dc.rightscc-by-nc-nd, (c) Guevara et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subjectGlobal positioning system
dc.subjectPoint cloud registration
dc.subjectMobile sensing
dc.subjectVehicle localization
dc.subjectPhenotyping
dc.titleA systematic analysis of scan matching techniques for localization in dense orchards
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
034875.pdf
Size:
5.98 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
639 B
Format:
Item-specific license agreed upon to submission
Description: