Post-fire recovery of soil microbial functions is promoted by plant growth
Issue date
2022-07-24Author
García-Pausas, Jordi
Romanyà i Socoró, Joan
Casals, Pere
Suggested citation
García-Pausas, Jordi;
Romanyà i Socoró, Joan;
Casals, Pere;
.
(2022)
.
Post-fire recovery of soil microbial functions is promoted by plant growth.
European Journal of Soil Science, 2022, vol. 73, núm. 4, p. e13290.
https://doi.org/10.1111/ejss.13290.
Metadata
Show full item recordAbstract
Forest fires can alter the biological properties of soils. There is increasing evidence that fires cause a shift in soil microbial communities, which play a central role in forest carbon and nutrient cycling. In this study, we evaluate the effect of soil heating on soil microbial functions. We hypothesised that fire reduces the catabolic functional diversity of soil, and that post-fire plant growth enhances its recovery. To test this, we experimentally heated a forest soil at 200C (T200) or 450C (T450). Heated and unheated soils were then
incubated in tubs with or without live grass (Lolium perenne L.). We determined the functional profiles by measuring the substrate-induced respiration (SIR) using the Microresp™ technique and analysed nutrient availability at the end of the incubation. At both temperatures, soil heating altered the respiration responses to substrate additions and the catabolic functional diversity of soils. Functional diversity was initially reduced in T200 soils but recovered at the end of the incubation. In contrast, T450 soils initially maintained the catabolic functional diversity, but decreased at the end of the incubation. Heatinginduced nutrient availability stimulated the growth of grass, which in turn increased the response to several substrates and increased the functional diversity to values similar to the unheated controls. Our results suggest that firedriven alteration of soil microbial communities has consequences at a functional level, and that the recovery of plant communities enhances the recovery of soil microbial functions.
Is part of
European Journal of Soil Science, 2022, vol. 73, núm. 4, p. e13290European research projects
Collections
The following license files are associated with this item: