Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   DSpace Home
  • Recerca
  • Enginyeria Agroforestal
  • Articles publicats (Enginyeria Agroforestal)
  • View Item
  •   DSpace Home
  • Recerca
  • Enginyeria Agroforestal
  • Articles publicats (Enginyeria Agroforestal)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistics and Nosé formalism for Ehrenfest dynamics

Thumbnail
View/Open
Preprint (256.6Kb)
Issue date
2011
Author
Alonso, J. L.
Castro, Alberto
Clemente-Gallardo, Jesús
Cuchí Oterino, J. C.
Echenique, Pablo
Falceto, Fernando
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
Quantum dynamics (e.g., the Schrödinger equation) and classical dynamics (e.g., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. The difference between both worlds is due to the presence of extra structure in the quantum case, that leads to
the appearance of the probabilistic nature of the measurements and the indetermination and superposition principles. In this paper we first show that the quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann's distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. This work provides the basis for extending stochastic methods to Ehrenfest dynamics.
URI
http://hdl.handle.net/10459.1/57789
DOI
https://doi.org/10.1088/1751-8113/44/39/395004
Is part of
Journal of Physics A: Mathematical and Theoretical, 2011, vol. 44:395004
Collections
  • Articles publicats (Enginyeria Agroforestal) [261]
  • Publicacions de projectes de recerca del Plan Nacional [1759]

Contact Us | Send Feedback | Legal Notice
© 2019 BiD. Universitat de Lleida
Metadades subjectes a
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2019 BiD. Universitat de Lleida
Metadades subjectes a