Articles publicats (Medicina Experimental)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 409
  • Item
    Open Access
    Subpopulations of corticotropin-releasing factor containing neurons and internal circuits in the chicken central extended amygdala
    (Wiley, 2024) Pross, Alessandra; Hanafi-Metwalli, Alek; Abellán Ródenas, Antonio; Desfilis, Ester; Medina Hernández, Loreta Mª
    In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.
  • Item
    Open Access
    A novel telencephalon‐opto‐hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala
    (2021-01-13) Morales García, Lorena; Castro Robles, Beatriz; Abellán Ródenas, Antonio; Desfilis, Ester; Medina Hernández, Loreta Mª
    Deficits in social cognition and behavior are a hallmark of many psychiatric disorders. The medial extended amygdala, including the medial amygdala and the medial bed nucleus of the stria terminalis, is a key component of functional networks involved in sociality. However, this nuclear complex is highly heterogeneous and contains numerous GABAergic and glutamatergic neuron subpopulations. Deciphering the connections of different neurons is essential in order to understand how this structure regulates different aspects of sociality, and it is necessary to evaluate their differential implication in distinct mental disorders. Developmental studies in different vertebrates are offering new venues to understand neuronal diversity of the medial extended amygdala and are helping to establish a relation between the embryonic origin and molecular signature of distinct neurons with the functional subcircuits in which they are engaged. These studies have provided many details on the distinct GABAergic neurons of the medial extended amygdala, but information on the glutamatergic neurons is still scarce. Using an Otp‐eGFP transgenic mouse and multiple fluorescent labeling, we show that most glutamatergic neurons of the medial extended amygdala originate in a distinct telencephalon‐opto‐hypothalamic embryonic domain (TOH), located at the transition between telencephalon and hypothalamus, which produces Otp‐lineage neurons expressing the telencephalic marker Foxg1 but not Nkx2.1 during development. These glutamatergic cells include a subpopulation of projection neurons of the medial amygdala, which activation has been previously shown to promote autistic‐like behavior. Our data open new venues for studying the implication of this neuron subtype in neurodevelopmental disorders producing social deficits.
  • Item
    Open Access
    CK2 controls TRAIL and Fas sensitivity by regulating FLIP levels in endometrial carcinoma cells
    (Springer Nature, 2008) Llobet Navàs, David; Eritja Sánchez, Núria; Encinas Martín, Mario; Llecha Cano, Núria; Yeramian Hakim, Andree; Pallares, Judit; Sorolla Bardají, Anabel; González-Tallada, Xavier; Matias-Guiu, Xavier; Dolcet Roca, Xavier
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising antineoplastic agent because of its ability to selectively kill tumoral cells. However, some cancer cells are resistant to TRAIL-induced apoptosis. We have previously demonstrated that in endometrial carcinoma cells such resistance is caused by elevated FLICE-inhibitory protein (FLIP) levels. The present study focuses on the mechanisms by which FLIP could be modulated to sensitize endometrial carcinoma cells to TRAIL-induced apoptosis. We find that inhibition of casein kinase (CK2) sensitizes endometrial carcinoma cells to TRAIL- and Fas-induced apoptosis. CK2 inhibition correlates with a reduction of FLIP protein, suggesting that CK2 regulates resistance to TRAIL and Fas by controlling FLIP levels. FLIP downregulation correlates with a reduction of mRNA and is prevented by addition of the MG-132, suggesting that CK2 inhibition results in a proteasome-mediated degradation of FLIP. Consistently, forced expression of FLIP restores resistance to TRAIL and Fas. Moreover, knockdown of either FADD or caspase-8 abrogates apoptosis triggered by inhibition of CK2, indicating that CK2 sensitization requires formation of functional DISC. Finally, because of the possible role of both TRAIL and CK2 in cancer therapy, we demonstrate that CK2 inhibition sensitizes primary endometrial carcinoma explants to TRAIL apoptosis. In conclusion, we demonstrate that CK2 regulates endometrial carcinoma cell sensitivity to TRAIL and Fas by regulating FLIP levels.
  • Item
    Open Access
    Bioluminescence Imaging to Monitor the Effects of the Hsp90 Inhibitor NVP-AUY922 on NF-κB Pathway in Endometrial Cancer
    (Springer, 2016) Yeramian Hakim, Andree; García, Virginia; Bergadà Bertran, Laura; Domingo, Mónica; Santacana Espasa, Maria; Valls, Joan; Martínez Alonso, Montserrat; Carceller Vidal, José A.; Llombart Cussac, Antonio; Dolcet Roca, Xavier; Matias-Guiu, Xavier
    Purpose: In this study, we first aimed to evaluate the effects in vitro and in vivo, of the Hsp90 inhibitor NVP-AUY922, in endometrial cancer (EC). We also aimed to track nuclear factor kappa B (NF-κB) signalling, a key pathway involved in endometrial carcinogenesis and to check whether NVP-AUY922 treatment modulates it both in vitro and in vivo. Procedures: I n vitro effects of NVP-AUY922 on EC cell growth and the signalling pathways were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic assays, Western Blot and luciferase assay. NVP-AUY922 effect on Ishikawa (IK) xenograft growth was evaluated in vivo, and NF-κB activity was monitored using bioluminescence imaging. Results: NVP-AUY922 inhibited the growth of three endometrial cell lines tested in vitro. In vivo, NVP-AUY922 reduced tumour growth of 47 % (p = 0.042) compared to control condition. Moreover, the bioluminescence signal of the tumours harbouring IK NF-κB-LUC cells was significantly reduced in NVP-AUY922-treated animals compared to untreated ones. Conclusions: NVP-AUY922 reduced EC tumour growth and NF-κB signalling both in vitro and in vivo. As therapeutic resistance of EC remains a challenge for oncologists nowadays, we think that NVP-AUY922 represents a valid alternative to conventional chemotherapy, and we believe that this approach for assessing and tracking the activation of NF-κB pathway may be of therapeutic benefit.
  • Item
    Open Access
    Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway
    (Wiley, 2012) Yeramian Hakim, Andree; Sorolla Bardají, Anabel; Velasco Sánchez, Ana; Santacana Espasa, Maria; Dolcet Roca, Xavier; Valls, Joan; Abal Diaz, Leandro; Moreno, Sara; Egido Garcia, Ramon Maria; Casanova i Seuma, Josep M. (Josep Manel); Puig, Susana; Vilella, Ramón; Llombart, Antonio; Matias-Guiu, Xavier; Martí Laborda, Rosa Ma.
    Despite the use of multiple therapeutic strategies, metastatic melanoma remains a challenge for oncologists. Thus, new approaches using combinational treatment may be used to try to improve the prognosis of this disease. In this report, we have analyzed the expression of receptor tyrosine kinases (RTKs) in melanoma specimens and in four metastatic melanoma cell lines. Both melanoma specimens and cell lines expressed RTKs, suggesting that they may represent eventual targets for multitargeted tyrosine kinase inhibitor, Suntinib. Sunitinib reduced the proliferation of two melanoma cell lines (M16 and M17) and increased apoptosis in one of them (M16). Moreover, the two metastatic melanoma cell lines harbored an activated receptor (PDGFRα and VEGFR, respectively), and Sunitinib suppressed the phosphorylation of the RTKs and their downstream targets Akt and ribosomal protein S6, in these two cell lines. Similar results were obtained when either PDGFRα or VEGFR2 expression was silenced by lentiviral-mediated short-hairpin RNA delivery in M16 and M17, respectively. To evaluate the interaction between Sunitinib and Bortezomib, median dose effect analysis using MTT assay was performed, and combination index was calculated. Bortezomib synergistically enhanced the Sunitinib-induced growth arrest in Sunitinib-sensitive cells (combination index < 1). Moreover, LY294002, a PI3K inhibitor, sensitized melanoma cells to Bortezomib treatment, suggesting that downregulation of phospho-Akt by Sunitinib mediates the synergy obtained by Bortezomib + Sunitinib cotreatment. Altogether, our results suggest that melanoma cells harboring an activated RTK may be clinically responsive to pharmacologic RTK inhibition by Sunitinib, and a strategy combining Sunitinib and Bortezomib, may provide therapeutic benefit.