Articles publicats (Enginyeria Industrial i de l’Edificació)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 695
  • Item
    Open Access
    Path Planning of a Mobile Delivery Robot Operating in a Multi-Story Building Based on a Predefined Navigation Tree
    (MDPI, 2023) Palacín Roca, Jordi; Rubies, Elena; Bitriá, Ricard; Clotet Bellmunt, Eduard
    Planning the path of a mobile robot that must transport and deliver small packages inside a multi-story building is a problem that requires a combination of spatial and operational information, such as the location of origin and destination points and how to interact with elevators. This paper presents a solution to this problem, which has been formulated under the following assumptions: (1) the map of the building’s floors is available; (2) the position of all origin and destination points is known; (3) the mobile robot has sensors to self-localize on the floors; (4) the building is equipped with remotely controlled elevators; and (5) all doors expected in a delivery route will be open. We start by defining a static navigation tree describing the weighted paths in a multi-story building. We then proceed to describe how this navigation tree can be used to plan the route of a mobile robot and estimate the total length of any delivery route using Dijkstra’s algorithm. Finally, we show simulated routing results that demonstrate the effectiveness of this proposal when applied to an autonomous delivery robot operating in a multi-story building.
  • Item
    Embargo
    Characterisation of the COMFORTBOARD gypsum board for thermal energy storage in buildings
    (Elsevier, 2024) Marín, Paula E.; Ushak, Svetlana; Gracia Cuesta, Alvaro de; Cabeza, Luisa F.
    Currently, the construction sector contributes considerably to the total energy consumption and greenhouse gas emissions into the atmosphere. Thermal energy storage (TES) systems are alternatives to increase the thermal inertia of buildings, aiming to use less energy, improve thermal comfort and reduce temperature fluctuations of interior spaces. One of the possible applications in buildings is to increase their thermal mass by impregnating phase change materials (PCM) in porous construction materials, e.g., gypsum boards. In this investigation, a commercial gypsum board impregnated with PCM (Knauf Comfortboard - BASF) was investigated by carrying out a structural and thermal characterisation. The thermal response obtained agrees with the product's technical data sheet provided by the supplier. The results of the thermal characterisation show that the inclusion of PCM in the gypsum board decreased the U-value by 2 % compared to the control sample (no PCM), increased the heat storage capacity by around 45 %, improved the thermal dynamic characteristics of the material by decreasing the thermal stability coefficient from 0.92 to 0.76 and increasing the thermal lag from 0.27 to 0.49 h. Our results sustain the potential application of commercial gypsum boards with PCM under environmental conditions across a wide range of daily temperature fluctuations (e.g., The North of Chile).
  • Item
    Open Access
    Optimal control of a solar-driven seasonal sorption storage system through deep reinforcement learning
    (Elsevier, 2023) Crespo, Alicia; Gibert Llauradó, Daniel; Gracia Cuesta, Alvaro de; Fernàndez Camon, César
    Deep reinforcement learning (DRL) has demonstrated its effectiveness in the control of energy systems, although it has not yet been applied to sorption thermal energy storage (TES) systems. The operation of sorption TES systems is notably more complicated compared to other TES variants. The discharge of a sorption TES occurs at a particular desorption and evaporation temperature. Achieving a continuous and efficient discharge of a sorption TES is a challenging control task if heat required at the evaporator is obtained from the sun or the environment. Its operation is especially complicated during winter, because of the limited availability of solar irradiation and low ambient temperatures. Thus, this study analyzes for first time in the literature the competitiveness of deep reinforcement learning to control a solar-driven seasonal sorption TES system and compares it against traditional optimized rule-based control strategy. The system, located in Central Europe, supplied domestic hot water and space heating to a single-family house. Two DRL models were developed and trained to operate the system under two different sets of data: 120 winter consecutive days and 60 winter non-consecutive days. The results showed that the DRL control strategy reduced the system operational costs by 28% in a 60 winter days scenario. For a 120 winter days scenario, the operational cost savings decreased to 13% because the smart control performed worst once the sorption TES was fully discharged. These results were derived from a four-year validation data set, bolstering their robustness. The study demonstrates the successful application of DRL in controlling a solar-driven seasonal sorption TES system, yielding considerable economic savings compared to an RBC strategy. Subsequent work will consist of implementing the smart control strategy at prototype level to assess its performance.
  • Item
    Open Access
    Experimental evaluation of different macro-encapsulation designs for PCM storages for cooling applications
    (Elsevier, 2023) Rehman, Omais Abdur; Palomba, Valeria; Vérez, David; Borri, Emiliano; Frazzica, Andrea; Brancato, Vincenza; Botargues, Teresa; Ure, Zafer; Cabeza, Luisa F.
    Extensive research has been conducted on utilizing phase change materials for cooling applications, making it one of the most explored techniques in this domain. This research paper presents a comprehensive performance evaluation of a latent heat thermal energy storage unit featuring three distinct macro-encapsulation designs for phase change materials. The study aims to assess the thermal performance, efficiency, and practical applicability of these macro-encapsulation designs in a storage system. The PCM macro-encapsulation designs under investigation include cylindrical and rectangular shapes, each possessing different geometry. Two different configurations have been considered in this study. One configuration contains same PCM mass in order to have similar storage capacity while the other configuration has maximum PCM mass that can be inserted inside the tank. The used phase change material is a salt hydrate with melting temperature of 17 °C. The experimental setup consists of a controlled test rig that simulates real-world conditions and enables the comparative analysis of the three designs. Key performance parameters such as the charging and discharging time, temperature profiles, heat transfer rate, and energy storage/retrieval rates are measured and analysed. The results obtained from the experimental study provide valuable insights into the thermal behaviour, energy storage capacity, and overall effectiveness of the three macro-encapsulation designs. It is important to mention that use of an encapsulation design is highly dependent on application. The findings of this study contribute to the understanding of the impact of different macro-encapsulation designs on performance of thermal energy storage units. The results serve as a basis for optimizing macro-encapsulation designs, improving the efficiency and reliability of latent heat storage systems, and promoting their wider adoption in various energy management applications.
  • Item
    Open Access
    Development of a new collagen gel product for leather finishing
    (MDPI, 2023-11-08) Zhang, Xinping; Sorolla, Sílvia; Casas, Concepció; Bacardit i Dalmases, Anna
    Leather finishing is a critical process in the leather industry, as it significantly influences the final appearance, durability, and quality of leather products. Traditional leather finishing techniques often involve the use of synthetic chemicals, which may lead to environmental concerns and potential health hazards. In this study, we investigate the feasibility and effectiveness of a new collagen-based product for leather finishing. Collagen, a natural protein found abundantly in animals, has shown promise as an environmentally friendly and sustainable alternative for leather finishing. The new collagen gel product obtained from bovine hide waste by using an alkaline extraction method with lime was functionalized through an enzymatic treatment that allows to achieve a finishing product suitable for coating formulations, and at the same time, a biodegradable finishing. The collagen gel product was optimized by varying parameters, such as temperature, pH, and enzyme quantity. The optimized collagen gel product exhibits a wide particle size range and retains the triple-helical structure of collagen. The leather samples treated with the collagen gel product show enhanced properties compared to those with conventional finishes. The results show that the collagen gel product enhances water vapor permeability, color stability, and touch in the finishes. However, a low resistance to wet rubbing is obtained; therefore, it is necessary to study how to improve this parameter.