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1. INTRODUCTION

In this survey we give an overview of the results obtained in the study of
isochronous centers of vector fields in the plane. This paper consists of two
parts. In the first one (sections 2-8), we review some general techniques
that proved to be useful in the study of isochronicity. In the second one
(sections 9 16), we try to give a picture of the state of the art at the
moment this review was written.

In section 2, we give some basic definitions about centers, isochronous
centers, first integrals, integrating factors, particular algebraic solutions,
and other related concepts. In this sections we also give some general
theorems about centers and isochronous centers, and we give a brief account
of the evolution of the researches in this field.

In the successive sections we focus on various methods that have been
used in attacking the isochonicity problem. We start with linearizations in
section 3, stating Poincaré’s classical theorem and some of its consequences.
Section 4 is devoted to describe the procedure that leads to define and
compute isochronous constants. In section 5, commutators are introduced,
and basic facts about couples of commuting systems are described. Clas-
sical theorems about systems obtained from complex ordinary differential
equations are collected in section 6. Hamiltonian systems are considered in
section 7, where their connection to the study of the Jacobian Conjecture is
showed, too. Section 8 is concerned with systems having constant angular
speed with respect to some coordinate system.

The second part starts with section 9, that is devoted to recent re-
sults about second order differential equations not immediately reducible
to hamiltonian systems. This section also contains the characterization of
isochronous centers of reversible Liénard systems. In section 10 we list all
fundamental results about isochronous centers of quadratic systems. Next
section contains results about cubic systems with homogeneous nonlinear-
ities. Sections 12 is devoted to cubic reversible systems. In section 13 we
collect results about quartic and quintic systems with homogeneous non-
linearities. A class of particular cubic systems, with degenerate infinity is
considered in section 14. Finally, section 15 is devoted to Kukles system.

All the sections of the second part, and some of the first part, contain
tables, where the main features of the considered systems are collected.
When possible, for every class of systems we have written the system in
rectangular and polar coordinates, and we have reported a first integral, a
commutator, a linearization and a reciprocal integrating factor.

The bibliography contains references both to papers devoted to the study
of isochronicity and to papers concerned with integrability of plane sys-
tems and the study of the period function of centers. We have tried to
make the bibliography so complete as possible for what is concerned with
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isochronicity. We have made no effort to make it complete for papers about
integrability and the study of the period function. We address the reader
interested in integrability problems to the forthcoming review paper by
Conti [37].

We apologize for possible mistakes and encourage the readers to commu-
nicate us any corrections.

2. THE CENTER PROBLEM AND THE ISOCHRONICITY
PROBLEM

We consider here planar vector fields or equivalently systems of differen-
tial equations

W =Xy, Woy=Vy) (1)

dat dt
with (z,y) € U, open connected subset of R?, and X,Y € C*(U,R), with
k > 1. Poincaré in [78] defined the notion of center for a real system on
the plane.

DEFINITION 2.1. We say that an isolated singular point O of (1) is
a center if and only if there exists a punctured neighbourhood V of O,
V C U, such that every orbit in V is a cycle surrounding O.

The largest connected set, No covered with cycles surrounding O is called
central region. A center is said to be global if No = U, that is, if every
solution of (1) is periodic.

The two following definitions are due to Chavarriga, Giacomini, Giné
and Llibre [14].

DEFINITION 2.2. Let H € C¥(U,R), k > 0, be a (single-valued) func-
tion, non-constant on open sets. H is said to be a strong first integral of
system (1) if H is constant on each solution of this system.

Here k£ > 0 means that £k = 0,1,2,...,00,w. More precisely, £ = 0 means
that H is continuous, k = 1,2, ..., 00 means that H is C*, k = w means
that H is analytic.

This definition of strong first integral is the usual definition of first inte-
gral which appears in most books on differential equations (see for instance
Arnold [5], Farkas [43], Nemitskii and Stepanov [72], Sansone and Conti
[92] and Sotomayor [99]). With this definition the linear differential system

. U=y, (2)

"We would like to thank prof. R. Conti of the Universitd di Firenze and prof. A.
Gasull of the Universitat Autonoma de Barcelona for having suggested some corrections
in a previous version of this paper.

L=
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defined on R? has no strong first integrals. This is due to the fact that
every strong first integral of system (2) must be a continuous function on
R? that takes a constant value on each straight line through the origin.
Hence it has to be constant on all of R2, that contradicts the definition of
strong first integral.

DEFINITION 2.3. Let ¥ be the union of a family of orbits of system (1),
and H € C*(U \ %,R), k > 0, be a multi-valued function, non-constant
on open sets. H is said to be a weak first integral of system (1) if H is
constant on each solution of this system contained in U \ X.

With this definition the function arg(z,y) is a weak first integral of sys-
tem (2). In this case U = R?, ¥ = {(0,0)}.

The use of multi-valued functions as first integrals has a long history.
Thus, for instance, the first integrals computed by Darboux [39] for systems
possessing sufficiently many algebraic solutions are in general of this kind
(see also the book of Andronov, Vitt and Khaikin [4].)

We say that system (1) is a polynomial system if X and Y are polynomials
with coefficients in F, where F is either the real field R or the complex field
C; in this case, we write X,Y € F[z,y]. In both cases, we assume ¢ to be
a real variable. We say that m = max{ deg X, deg Y} is the degree of the
polynomial system.

DEFINITION 2.4. An invariant algebraic curve of system (1) is an al-
gebraic curve f(x, y) = 0 with f € F[z,y], such that for some polynomial
K € F[z,y] we have

af of

—X+ =Y =KFf

or dy /
We say that the curve f = 0 with f € F[z,y] is an algebraic solution of
system (1) if and only if it is an invariant algebraic curve and f is an
irreducible polynomial over F[z, y].

We emphasize that f can be a complex polynomial even in the case that
X,Y arereal polynomials. If f = 0is a complex algebraic solution of a real
system, then also its complex conjugate is a complex algebraic solution of
the system. For instance, the system

has the real algebraic solution z2 + y?> = 0 and two complex algebraic
solutions z + iy = 0 and = — iy = 0.

The polynomial K is called the cofactor of the invariant algebraic curve
f = 0. We remark that if the polynomial system has degree m, then its
cofactor has at most degree m — 1.
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The work of Darboux contributed to show the link between the theory of
polynomial systems and that of algebraic curves. Darboux showed how the
first integrals of polynomial systems possessing sufficient algebraic solutions
can be constructed. In particular, he proved that if a polynomial system of
degree m has at least % algebraic solutions, then it has a weak first
integral.

Darboux’s idea consists in looking for a first integral of the form F =

i ff‘ where \; € F and f; = 0 are invariant algebraic curves of system
(1). Such a first integral is called a Darbouz first integral.

Some recent improvements to Darboux Theorem have been obtained by
Chavarriga, Llibre and Sotomayor [21]. Essentially these improvements
are based on the fact that the existence of a suitable number of singular
points reduces the number M of algebraic solutions necessary for the
integrability of the polynomial system.

Let U be an open subset of R? an let R € C*(U,R) be an function which
does not vanish on open subsets of U. The function R is an integrating
factor of system (1) on U if

O(RX)  O(RY)
or 9y

The first integral H associated to the integrating factor R can be computed
via the integral

H(r,y) = </RTU (Tu)du>+f()

imposing the condition %’;’ = —RY. Let V be the reciprocal of an integrat-

ing factor. The function V is namely a reciprocal integrating factor, and
is a useful tool in the study of both integrable systems and non-integrable
ones (see Chavarriga, Giacomini and Giné [13]).

In order to introduce next theorem we need some notation and defini-

tions. Let Fyn_1[z,y] be the set of polynomials S(z,y) Z aijx'y’
i+35=0

with its w coefficients in the field F. We identify F,,_1[z,y] with

the linear vector space L,_;, of dimension M by the isomorphism

S — ((10(], a10,a015---50n—-1,0,0n—21,-- - (lovnfl). We say that P pOiIltS

(zr,yr) with k = 1,2,...,p, are independent with respect to L,_; if the
n—1

intersection of the p hyperplanes Z aija:fcy'; =0,k=1,2,...,p,in L, 4
i+j=0

is a linear subspace of dimension ” n(nt1) H) —p.

We remark that the maximum number of isolated singular points of sys-
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tem (1) is m? (by Bezout’s Theorem), and that the maximum number of
isolated singular points that are independent with respect to both compo-
nents of system (1) is M and that ™™ < 2 for m > 2.

A singular point (zq,yo) of system (1) is called weak if the divergence
div(X,Y), of system (1) at (xo,yo) is zero, that is

ox oy

(div(X, Y))(z0,y0) = [8.1: + %] (70,%0) = 0.

The main result of Darboux and the improvements of [21] are summarized
in the following theorem.

THEOREM 2.1. Suppose that a polynomial system (1) of degree m admits
q tnvariant algebraic curves f; = 0 with cofactors K; for i = 1,2,....q,
and p independent singular points (vi,yr) for k = 1,2,...,p, such that
filz,yx) # 0. We have

q
(1) If there exist A\; € F not all zero such that Z NiK; =0, then f .. .qu"

i=1

is a first integral, if F = C, or |fi|™ ...|f,| e is a first integral, if F = R.

(i) Ifq > W + 1 — p, then there exist \; € F not all zero, such that

q
ZMQ =0.
=1

q
(iii) If g > M—ﬂ then there exist integer \; € F such that Z MK =
i=1
0. In particular the first integral given by (i) is rational, and consequently
all solutions of the system are algebraic.

q
(iv) If there exist \; € F not all zero, such that Z)\,;K,; = —div(X,Y),
i=1
then R = 1>‘1 ...f,;“’ is an integrating factor, if F = C, or |f1|* ...|f,|*
is an integrating factor, if F = R.

(v)Ifq > W —p > 0 and the p independent singular points are weak,

q
then there exist A; € F not all zero, such that Z MK = —div(X,Y).

i=1

Let us consider a polynomial system (1) of degree m with an isolated
singular point which we place at the origin O. We consider the case where
the linear part of system (1) at O has pure imaginary eigenvalues A\; 5 =
+iw, w € R,w # 0. If we make a linear coordinate change and a time
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rescaling, we can write system (1) in the form

p= g+ Xmy),  G=+ Y V(). 3)

s=2

with X, Y; homogeneous polynomials of degree s, s = 2,3,...,m. We
have the following theorem due to Poincaré [79].

THEOREM 2.2. The origin of system (3) is a center if and only if, in an
open neighbourhood of the origin, system (3) has a C¥ nonconstant strong
first integral.

Poincaré’s theorem has been generalized to C* systems, fork =1,. .., 00, w,
see Liapunov [60] and Mazzi and Sabatini [69]. We summarize their results
in next theorem.

THEOREM 2.3. Let X, Y be functions of class C*, k=1,...,00,w, in a
neighbourhood U of a singular point O of system (1). Then O is a center of
system (1) if and only if system (1) has a strong first integral of class C*,
k=1,...,00,w, in an open neighbourhood V. C U of O, with an isolated
minimum at O.

Let X, Y be analytic functions in a neighbourhood U of a singular point
O of system (1), which we may place at the origin. Let A\ 2 = +iw, w €
R,w # 0 be the eigenvalues of the linear part at the origin O. We can
make a linear coordinate change and a time rescaling, then we can write
system (1) in the form

s=2 s§=2

where the right hand side of (4) is a real power series, convergent in U, and
X, Y, are homogeneous polynomials of degree s, s = 2,3,... .

The main analytic technique to determine whether O is a center of system
(4) or not was introduced by Poincaré [79] and developed by Liapunov [60].
It consists in looking for a formal power series of x and y of the form

(=* + 9%

H(a:,y) = ZHn(may)v HQ(wvy) = 9 ) (5)

where the H,,(z,y) are homogeneous polynomials of degree n, n = 3,4, ..,
verifying

H=

> OH
—y+ ;Xs(ﬂ%y)] oz +

= OH
s=2 ay
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ZVQk($2 +yH)k, (6)

k=1

with Vs polynomials in the coefficients of system (4). The Vs, are called
Liapunov constants. The first Liapunov constant different from zero is
uniquely determined but the others are not. The sign of the first Liapunov
constant different from zero gives us the stability of the origin: if it is
negative the system has asymptotic stability for the positive times and
if it is positive it has asymptotic stability for the negative times. As a
consequence, all the Liapunov constants have to vanish, for O to be a
center of (4).

The converse statement is true, too. Poincaré [79] and Liapunov [60],
showed that, when the Liapunov constants vanish, there exists a conver-
gent series of type (5), satisfying (6). As a consequence, the origin is a
center if and only if all the Liapunov constants are zero. In this case the
convergent series is an analytic strong first integral of system (3) or (4)
in a neighbourhood of the origin (see Poincaré [79] and Chazy [22]). In
general, it is not always possible to express this first integral by means of
elementary functions.

For polynomial systems, we have uniqueness of Liapunov constants in the
sense of the following theorem due to Songling Shi [95]. Let us write

n 1 n i
X=—y+> Y aya" Iy, Y =2+ > bja' Iy (7)

i=2 j=0 i=2 j=0

THEOREM 2.4. Let A be the ring Qlai;,bi;],1=2,3,...,n,j=0,1,...,1i.
Given a set of Liapunov constants Vi, , Vi,,...,Vip, let Ji_1 be the ideal of
A generated by Vi, Viy, ..., Vi, k <p. If V] V. ..., V"iy is another set

of Liapunov constants, then Vi, =V, mod (J—1).

Let J be the ideal of A generated by all Liapunov constants. By Hilbert’s
basis theorem, J is finitely generated, that is there exists Wy, W, ..., W,
such that .J is generated by Wi, Ws,...,W,. Such a set of generators is
called a basis. The vanishing of these generators implies the vanishing of
all the Liapunov constants.

Several results concerning centers of polynomial sytems are based on
Poincaré-Liapunov method. In the quadratic case, thanks to Dulac [42],
Kapteyn [56], Frommer [44] and Bautin [9], it is known that there are ex-
actly three independent Liapunov constants. It was Bautin [9] who deter-
mined the three Liapunov constants for the first time, and the first integrals
were given by Lunkevich and Sibirskii [66]. From different points of view, Li
Chengzhi [61], Lloyd [62], Chavarriga [11], Sibirskii [96] and Zoladek [114],
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each gave the three constants and characterized the different integrable
cases, expressing the first integrals for each case.

In the cubic case with homogeneous nonlinearities, thanks to Sibirskii
[97] and Zoladek [115] it is known that there are five independent Liapunov
constants. These were first given in cartesian coordinates by Sibirskii [97],
and later by Lloyd [62]. The characterization of the integrable cases using
polar coordinates, as well as the first integrals corresponding to each case
were given by Chavarriga [11]. In the same work, he formulated a theorem
that generalizes two integrable cases to polynomial systems of arbitrary
degree.

Zoladek [116] gave partial results about the complete cubic case studying
reversible cubic systems (systems with a center is said to be reversible if
its orbits are symmetric with respect to a line passing through the center).
Another significant result is the initial classification of Darboux integrals
for cubic systems, by Sokulski [98]. These papers follow the idea of clas-
sifying the integrable systems according to the form of their first integral.
Four groups appear (the ones with the Darboux Integral; those with the
Darboux-Schwartz-Christoffel Integral; the systems that have the Darboux
Hyperelliptic Integral and rationally reversible systems). From that point
on, these problems are open. Nowadays, only some integrable cases are
known for systems with fourth and fifth degree homogeneous nonlineari-
ties, as given by Chavarriga and Giné [15, 16].

A special family of cubic systems, equivalent to a class of second order
differential equations, is formed by the following systems

T =y,
U —x+ a12% + aszy + azy® + asx® + as2’y + agzy? + ary®. (8)

These systems were first studied by Kukles [58]. Kukles claimed to have
proved a set of necessary and sufficient conditions for the origin to be a
center of (8). Later, Jin and Wang [55] found an integrable example that
does not verify the conditions set by Kukles. Lloyd and Pearson [63] found
another different integrable case and they conjectured that there were no
other possible integrable cases besides the known ones.

Finally, another family of cubic systems is the one with the form

w:—y—l—Xg(a:,y)—i—Xg(a:,y), y:ﬂf+YQ($,y)+Y3(.’II,y), (9)

where X;(z,y) and Yi(z,y), s = 2,3, are homogeneous polynomials of
degree s, verifying the condition zV3(x,y) —yX3(z,y) =0 with X2+ V3 #
0. Such systems represent a specific case of cubic systems with degenerate
infinity. This term was introduced by Sotomayor [100], and it owes its
origin to the fact that, in Poincaré’s compactification, every point at infinity
is singular. These systems have been studied by Chen Guang-Qing and
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Liang Zhao-Jun [23], and, more recently, by Gasull and Prohens [47], who
classified the quadratic systems with degenerate infinity.

Let O be a center, and V be a neighbourhood of O covered with cycles
surrounding O. We can define a function, the period function of O, by
associating to every point (z,y) of V' the minimal period of the cycle passing
through (x,y). A very special case is that of a constant period function, as
in next definition.

DEFINITION 2.5. A center O of a system (1) is isochronous if the period
of all integral curves in a punctured neighbourhood V'\{O} of O is constant.

The study of isochronous centers started when Huygens studied the cy-
cloidal pendulum. This pendulum has isochronous oscillations, while the
usual pendulum has oscillations of period increasing with the amplitude.
The equations of the cycloidal pendulum are most easily written when the
arc lenght s is the independent variable

d’s

—— 4+ ks =0, 10

e (10)
where k is a real constant. This is a special case of the following class of
second order differential equations:

d’s

— +g(s) = 0. 11

(o) (1)
Such equations arise in the study of conservative mechanical systems, that
is mechanical systems that preserve the mechanical energy (= kinetic +
potential energy). In the differential equations language, this is equivalent
to the existence of a first integral of the form:

H(s,3) = % + G(s), (12)

where G(s) = [’ g(u)du. Urabe [101] and [102] studied the period function
of (11), and proved a striking result: if we assume g(s) to be an odd func-
tion, then the only differential equation of type (11) having an isochronous
center at O is (10). We shall deal in more detail with Urabe’s results in
the section concerned with hamiltonian systems.

Several classes of systems have been studied, in relation to the existence
of isochronous centers. Among them, systems obtained from complex dif-
ferential equations z = iP(z), z = x + iy, were considered by Gregor [50],
Hajek [51], [52], Lukashevich [65], Villarini [104], Mardesi¢, Rousseau and
Toni [68], Christopher and Devlin [28], Sabatini [87]; quadratic systems, by
Loud [64], Chicone and Jacobs [27], Sabatini [85]; cubic systems with ho-
mogeneous nonlinearities by Pleshkan [76], Pyzhkova and Cherenkova [80],
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Collins [34], Gasull, Guillamén and Manosa [45], Mazzi and Sabatini [70],
Rousseau and Toni [82]; Kukles systems (8) by Christopher and Devlin [28],
Rousseau and Toni [83], Mardesi¢, Rousseau and Toni [68]; cubic reversible
systems with constant angular speed, by Mardesi¢, Rousseau and Toni [68],
Collins [34], Mazzi and Sabatini [70], Christopher and Devlin [28], Chavar-
riga and Garcia [12]; cubic reversible systems, by Chavarriga and Garcia
[12]; cubic systems with degenerate infinity (9), by Christopher, Devlin,
Lloyd, Pearson and Yasmin [30], Chavarriga, Giné and Garcia [18]; quartic
and quintic systems with homogeneous nonlinearities by Chavarriga, Giné
and Garcfa [19]; systems with a fractional vector field by Pleshkan [77].

Centers with a nonconstant period function received a significant at-
tention, too. We are also interested in such results, because they can be
considered as negative results about isochronicity. Anyway, we shall not go
into details about them. We only quote some papers in which centers with
non-constant period functions are studied, since they are naturally related
to some of the isochronicity cases considered in the present paper. Thus,
for instance Waldvogel [111], Hsu [53], Rothe [81], Chicone and Dumortier
[26], Coppel and Gavrilov [38] considered quadratic systems; Waldvogel
[111], Schaaf [93], Chicone [25], Collins [33], Gasull, Guillamon, Mafosa
and Manosas [46] hamiltonian systems; Urabe [102], Opial [75] and Obi
[73] second order conservative differential equations; Cima, Gasull, Mafosa
and Manosas [31] and Sabatini [90] Liénard differential equations.

Finally, we observe that there exist differential systems that have both
isochronous centers and non-isochronous ones. The coexistence of isochro-
nous centers and nonisochronous centers has been studied by Devlin [40].

3. LINEARIZATIONS

Given the plane differential system (1), we say that (1) is C*-linearizable
at a point O if there exists a local C*-diffeomorphism @ defined in a neigh-
bourhood of O that transforms (1) into a linear differential system (see
Trwin [54]). By the local rectification theorem, every system can be lin-
earized at a nonsingular point. On the other hand, this is not true at sin-
gular points, since diffeomorphisms preserve the index, and singular points
of linear systems can only have index 1,0 or -1. Moreover, even in the case
of singular points with the same index, in general there are no diffeomor-
phisms taking locally one system into the other. In fact, diffeomorphisms
preserve cycles’ periods, hence two centres with different period functions
cannot be transformed into each other by any diffeomorphism. Centers of
linear systems are isochronous, so that a necessary condition for a system
with a center at O to be linearizable is that O be isochronous. For ana-
lytic systems, such a condition is also sufficient for the linearizability (see
theorem 3.3).
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Let us consider an analytic system with a center at O. We recall that a
center is said to be nondegenerate if the determinant of the linear part at
O is different, from zero. Every system with a nondegenerate center at O
can be reduced, by a linear transformation and a time rescaling, into the
form (4). Next theorem is due to Poincaré.

THEOREM 3.1. For an analytic system (4) with a nondegenerate center
there exists an analytic change of coordinates of the form x = x+o(|(z,y)l),
n =y + o(|(z,y)|) and an analytic function VU such that the coordinate
change transforms the system (4) into a system of the form

X=-n1+¥0*+7%), 09=x0+¥K>+7°). (13)

Without loss of generality, we can assume that ¥(0,0) = 0.

Following Mardesié, Rousseau and Toni [68], we observe that, by theorem
2.3, if system (4) has a center at O, then there exists a strong first integral
of the form F(x,y) = 2> +y*+o0o(| (z,y) |*). Since all terms of degree higher
than 2 are divisible either by 22 or by y?, the first integral can be written in
the form F(z,y) = 22 (1 + f(=,9)) + v? (1 + g(,y)). The analytic change

of coordinates x = z+v/1+ f(z,y), n = y\/1+ g(x,y) transforms system

(4) into
x=-n1+G0x,n), n1=x1+Gx,n), (14)

where G(x,n) is an analytic function. As a consequence, we have the
following theorem.

THEOREM 3.2. The analytic system (4) has an isochronous center at O
if and only if

27
dp
=2 15
,/0 14+ G(rcosp, rsing) T (15)

In the special case of theorem 3.1, the condition (15) implies ¥ (x?+n?) =
const. Hence, the following theorem holds.

THEOREM 3.3. A center of an analytic system (4) is isochronous if and
only if there exists an analytic change of coordinates of the form

x=z+o( (z,9) ), n=y+ol (zy)]),

reducing the system to the linear isochronous system
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where k is a non-zero real constant.

For a discussion of theorems 3.1, 3.2 and 3.3 and their applicability, see
Mardesi¢, Rousseau and Toni [68].

From theorem 3.3, it is evident that a necessary condition for an analytic
center O to be isochronous is that O is a nondegenerate singular point. Such
a condition has been extended to C*° vector fields in Villarini [104].

A special role in the study of polynomial systems is played by Darboux
linearizations. Next definitions will be given in complex notation. Let us set
z=x+1y,zZ=x—1iy. If we assume X (z,y) and Y (z,y) to be polynomials,
and O to be a nondegenerate center, then, after a linear change of variables
and a rescaling of time, system (3) can be written as

n
z2=1z+ Z aijzifj, Qij € C. (17)
itj=2

A Darbouz function is a function ((z) of the form:
() =[[F"), aec, (18)

where the function Fj(z) are either complex polynomials, or exponentials
of polynomials.

A Darbouz linearization is a Darboux function that is a local diffeomor-
phism at O, and takes system (17) into the system:

Z=1z. (19)
The above system is just the linear system
T = Y, y =, (20)

written in complex notation.

If a system is Darboux linearizable, then it is Darbouz integrable, that
is, it has a Darboux function as a first integral.

In Mardesi¢, Rousseau and Toni [68] and Mardesi¢, Moser-Jauslin and
Rousseau [67], the existence of Darboux linearizations for several classes of
polynomial systems is discussed.

4. COMPUTATION OF ISOCHRONOUS CONSTANTS

In the study of isochronous centers it is often convenient to use polar
coordinates. In Lemma 4.1 we give the expression of an analytic system
(4) in polar coordinates (see [11]).
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LEMMA 4.1. In polar coordinates x = r cos(p), y = rsin(y) we can write
system. (4) as follows

F=D Bt p=14) Qslert (21)
=2 5=2

where P;(p) and Q;(p) are trigonometric polynomials of the form

Py(p) =Ri jcos((s+1D)p+i ) +Ri_jcos((s—=Dp+es_y)+...+
N R§ cos(p + @) if s is even;
R; if s is odd;

Qs(p) = —R:,,sin ((9 + 1+ <p§+1) + 7, sin ((9 — e+ @2,1) +...+
N risin(p + @5) if s is even;
s if s is odd;

(22)

with s =1,2,... and where R}, v}, o] and @] are arbitrary coefficients.

Theorem 4.1 gives the form of hamiltonian systems and reversible sys-
tems in polar coordinates (see [11]).

THEOREM 4.1. System (21) has a center at the origin in the following
two cases:

(i) (Hamiltonian) If (s + 1)P;s + d{'i% =0 forals=12,...

(ii) (Reversible) If P;(p) and Qs(p) are of the form

Py(¢) =R sin(s+ 1w+ R} _;sin(s —Dw+ ...+
" Risinw, if sis even;
R3sin2w if s is odd;
Qs(p) =R jcos(s+1Nw+7r; jcos(s —Nw+...+
r{ cosw, if s is even;
r5cos 2w + 1o, if s is odd;

for all s = 2,3,... where w = ¢ + o, and @o, R} r; are arbitrary coeffi-
cients.

Lemma 4.1 and Theorem 4.1 are proved in Chavarriga [11].

Theorem 3.3 is the basis for the method that we describe in this sec-
tion, that is similar to Poincaré-Liapunov method for the identification of
centers.

Let the origin be an isochronous center of system (4). By theorem 3.3,
we know that for system (4) there exists an analytic change of coordinates
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x =z+o( (z,y) ), n =y+o(l (z,y) |) such that X +x = 0 and ij+7 = 0,
where we have taken k£ = 1 making a rescaling of the time. We can use
polar coordinates = rcosy, y = rsinp. Let x = H(r,¢) be a power
series of the form

H(r, o) = ZHi(w)ri,

where Hi(p) = cosp and H;(p), i = 1,2,..., are homogeneous trigono-
metric polynomials of degree i.

Let us call H the second derivative of H along the solutions of (12).
Then, let us impose that H + H = 0. Thus we obtain a system of recursive
differential equations given by

n

Hyy+ Hopo+ Y [QiQH + (G +2k = )PQ; + QiQ)) Hi+
i+j+k::1n+3
1AL ktntl oo | apyicosp+ Bppasing, if nis odd;
k [Pi Qi+ 73 P’Pj] Hy] = { 0, if n is even;
(23)

where n = 1,2,...," = %, P, =0,0Q1 =1 and Hy(p) = cosp, with a1
and (11 are real numbers called isochronous constants.

The isochronous constants are polynomials in the parameters of system (4).
The vanishing of all isochronous constants is a necessary condition for the
isochronicity of the origin. Moreover, if system (4) is polynomial then by
the Hilbert’s basis theorem exists ¢ € IN such that the ideal generate by the
isochronous constants is finitely generated by «y, 85, @y, Bjs, - - -, 5,5 Bj, -
Unfortunately, in general the number ¢ is a priori unknown, so that the ap-
plicability of this method meets the same restrictions of Poincaré-Liapunov
method for the identification of centers (see the previous section). In gen-
eral, proving that one of the period constants is different from zero shows
that the center is not isochronous, while proving that finitely many period
constants are zero proves the isochronicity only under some additional con-
ditions. For a discussion of this method see, for instance, Cima, Gasull,
Manosa and Manosas [31].

5. COMMUTING SYSTEMS

In this section we denote by z = (z,y) a point of the plane. Let us
consider a couple of differential systems defined on an open, connected
subset U of the plane

5 =V(z2), V = (v1,02) € CHU,R?), k> 2, (24)
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2 =W(z2), W = (i, wy) € C*(U,R?), k> 2. (25)

We denote by @(t,z) (resp. (s, z)) the solution of (24) ((25)), such that
$(0,2) =z (4(0,2) = 2).

Let T, S be positive real numbers, and P = [0,7] x [0, 5] be a rectangle,
that will be called a parametric rectangle.

DEFINITION 5.1.  We say that the local flows ¢(t,z) and (s, z) com-
mute if, for every parametric rectangle P such that both ¢(¢, (s, z)) and
(s, ¢(t,2)) exist whenever (¢,s) € P, one has

¢(t7¢(572)) = ¢(Sa¢(t72))- (26)

By a classical result, two local flows commute if and only if the Lie
brackets [V, W] of V and W vanish identically on U (see Arno’ld [6], Olver
[74]):

VW] = (0022 =y 522) + (00 22 — )

_ Jwa dva Owa Ova
[V,W]a = (1}1 e ) + (1)2 By — W2 By)

)

0 27
NNy

In this case we say that V and W commute, or that W is a commutator of
V. When dealing with commutators, we always assume that the following
conditions hold. We recall that V and W are said to be transversal at a
point z if v1 (2)wa(2) — va(2)ws (2) # 0.

(i) (Sv) and (Sw) have isolated critical points in U;

(ii) V(z) = 0 if and only if W(z) = 0;

(iii) if z € U, and V (z) # 0, then V(z) and W(z) are transversal;
(iv) [V,W]=0on U.

The equations (27) assume a very special form if W = (v2, —v1). In this
case, we write V| for W.

— Qva | Ov1 dva _ Ov1
[V7VJ~]1 _’Ul<8z + 3y> +1)2<3y 8w>

(28)
[V.Vily =u <85;2 - %?) e (éyf + 2912)

It is evident that if v; and wvs satisfy Cauchy-Riemann equations, then the
equations (28) hold. This simple observation led Villarini [104] to give a
very elegant geometric proof of Gregor’s results [50] about complex systems
(see next section). Sabatini [84, 86] later oberved that Villarini’s proof can
be extended to couples of transversal commuting vector fields, not neces-
sarily orthogonal to each other. In [86] it was proved that commutativity
can be used to characterize isochronous centers, as stated in next theorem.
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THEOREM 5.1. Let O be a center of system (1). Then O is an isochronous
center if and only if there exists a vector field W defined in a neighbourhood
of O, that is transversal to V at nonsingular points, and commutes with V.

Villarini [105] extended this result showing that V' has always a com-
mutator with nondegenerate linear part. A different proof, for analytic
systems, can be found in Algaba, Freire and Gamero [1]. Both construc-
tions in Sabatini [86] and Villarini [105] show that the commutator exists
on all of the central region.

In some cases, looking for a commutator is easier than looking for lin-
earizations. For instance, quadratic systems admit polynomial commu-
tators of degree < 4 (see Sabatini [85]), while polynomial linearizations
of quadratic systems are not known. The simplest known linearizations
of quadratic systems are rational (see Mardesi¢, Rousseau and Toni [68]).
On the other hand, it is not true that every polynomial system with an
isochronous center has a polynomial commutator. Let us consider Devlin’s
example [40]:

&= —y— ' +42%y% + ¢* =z —4z’y. (29)

This is a polynomial system having an isochronous center and two non-
isochronous centers. If a polynomial commutator existed, then it would be
defined on all of the plane, and the commutativity conditions would be sat-
isfied at every point of the plane. Then every center should be isochronous,
contradicting the existence of a non-isochronous center. A discussion and
some results about the existence of polynomial commutators for polynomial
systems can be found in Volokitin and Ivanov [106].

Sometimes polynomial systems do not satisfy all conditions (i), . ..,(iv).
In particular, it is possible for one of the two vector fields to have non-
isolated singularities. In this case we can reduce to the complement of the
set of non-isolated singularities, since commuting flows preserve transver-
sality. Let us call reachable set R(z) the set of points that can be connected
to z by means of finitely many arcs of orbits of V' and W. In [87] it was
showed that if V and W are transversal at z € R?, then they are transversal
at every point of R(z). This is a consequence of the following property of
couples of commuting systems. Let us write A = vyws — vow;. A vanishes
at z if and only if V and W are non-transversal at z. We have

OovA=AdivV, owA=AdivW, (30)

so that A vanishes at z if and only if it vanishes on all the V-orbit and
the W-orbit through z. As a consequence, if V and W are transversal at a
point of Np, they are transversal on all of Ng.

The function A has also an important role in the integrability of both
(24) and (25). Let us observe that a function B is an integrating factor of



18 J. CHAVARRIGA, M. SABATINI

both V and W if and only if:
OvyB=—-BdivV, OwB = —B div W. (31)

Comparing the above equations leads to the following conclusion (see Saba-
tini [89] and Chavarriga, Giacomini and Giné [13]).

THEOREM 5.2. Let [V,W] = O. Then viwy — vow; is a reciprocal inte-
grating factor of both V and W.

By theorem 5.2, if one knows a commutator W of V', then it is possi-
ble to find a first integral of both (24) and (25) by integrating a suitable
differential form. Anyway, in general it is not possible to find strong first
integrals of both systems. For instance, if (24) has a center O and (25)
an asymptotically stable point at O, in a neighbourhood of O one finds a
strong first integral for (24) and a weak first integral for (25). On the other
hand, in a neighbourhood of a regular point z, one finds strong first inte-
grals of both systems, and can even rectify locally V' and W (see Sabatini
[89]).-

Another noteworthy feature of commutators is the possibility to prove
the existence of centers. We say that {V () € C*(U, R?),0 € [0,27)} is
a complete family of commuting vector fields on U, if V(0) is a complete
family of rotated vector fields (see Duff [41] for the definition), and V 6;, 6, €
[0,27), one has [V (61),V(#2)] = 0 on U. If one of the vector fields in a
complete family has a point of index 1 at O then every other vector field
has the same index, with the possibility of limit cycle bifurcations as the
parameter 6 varies. If the family consists of commuting vector fields, no
such bifurcations can occur, so that the following theorem holds.

THEOREM 5.3. Let V() be a complete family of commuting vector fields.
Then there exists a parameter 8* € [0,7) such that O is a center for both

V(6*) and V(6* + ) and for no other values of 6.

The following corollary has been used by Mazzi and Sabatini [70] to prove
the integrability of a class of systems.

COROLLARY 5.1.  Let p(x,y),q(z,y),7(z,y),s(z,y) € C*(U,R). If the
system

t=-y+py), Y=z+4qy), (32)
commutes with the system
t=z+r(zy), §=y+s(xy), (33)

where p(x,y), ¢(x,y),r(x,y), s(z,y) = o(|(x,y)|), then the origin is an iso-
chronous center of (31).
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There is a natural relationship between commutators and linearizations.
Let us assume that there exists a local diffeomorphism @ taking (5) into
the linear system:

= —y Y= (34)

T=x 9=y. (35)

The transformation ® ! takes (35) into a system that commutes with (5).
® linearizes both and its commutator. It is natural to ask whether the
converse statement is true. Given a couple of commuting vector fields, is
it possible to find a transformation that linearizes both systems? For ana-
lytic systems, the answer is in the following theorem by Bambusi, Cicogna,
Gaeta and Marmo [7].

THEOREM 5.4. An analytic system of the form (5) is analytically lin-
earizable if and only if it admits an analytic commutator of the form (33).
Moreover, there exists an analytic transformation that linearizes both (5)
and (33).

For non-analytic systems, a partial result in the same direction has been
given in Mazzi and Sabatini [70] and Villarini [105].

THEOREM 5.5. Under the hypotheses of corollary 5.1, if a local diffeo-
morphism ® linearizes system (32), then it linearizes system (31) as well.

6. COMPLEX SYSTEMS

The first general class of plane systems for which isochronicity was proved
is that of the so-called complex systems. Let us consider the following
differential equation, where the unknown function is t — z(t), t € R,
z € C:

i = F(z). (36)

This complex differential equation can be written as a differential system
in the real plane of the form (1), where X = Re F'and Y = Im F'.

The first results about the isochronicity of complex systems was probably
given by Gregor [50], whose results can be found summarized in Hajek [51].
We report his results in next theorem.

THEOREM 6.1. Let us consider system (1). Let F = X +iY be mero-
morphic. Then:
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(i) every pole of F is a saddle point of system (1);

(ii) a multiple zero O of F is a node if Res(%, 0)=0;

(iii) a simple zero of F is either a node or a focus or a center;

(iv) a simple zero O of F is a center of system (1) if and only if F'(O)
is purely imaginary. In this case O is an isochronous center. The common
period of the cycles C surrounding O 1is:

211

=%

indcO

where indcO is the index of the cycle C' with respect to O.

Independently, Lukashevich [65] obtained some of Gregor’s results. He
considered only the case of an holomorphic F', showing that in this case
system (1) can be analytically linearized in a neighbourhood of a simple
singular point O. He also proved that system (1) cannot have limit cycles.

Hajek [51] and [52] extended Gregor’s results analyzing the global qual-
itative behaviour of the solutions of system (1). He gave a different proof
of the absence of limit cycles of system (1).

Recently Villarini [104] developped a geometric approach to the study of
complex systems. He showed that if F' is holomorphic, then the solutions
of system (1) and those ones of its orthogonal system:

ZL':_Y(.’L',y), y:X(may)v

commute. This allowed him to give one-line proofs of the isochronicity of
centers and of the absence of limit cycles.

By theorem 3.3, if X + 4Y is holomorphic, then system (1) can be an-
alytically linearized. The explicit form of the linearization, and an ex-
pression of the first integral, were given in Mardesi¢, Rousseau and Toni
[68] for polynomial systems. We report them in next table. We denote
by z;,j = 1,...,r the zeroes of F(z). For other results about complex
systems, see Christopher and Devlin [28].

7. HAMILTONIAN SYSTEMS

Let us consider H € C*(U,R), k > 2, U open connected subset of R?
containing the origin O. The differential system

. _9H . 0H

”’_(Ty’ y:*%a (37)
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TABLE 1.

Complex Systems.

Complex System
Cartesian coordinates:
= X(z,y),
y=Y(z,y).

Under the conditions:

ox _ oy
8z — 9y
ox _ 8y
8y z *

Transversal commuting system:
y=Y(z,y).

Linearization (in complex notation):
() = £ [Ty (= )t F )00,

where:

7 Res l,z-
Q= [(}- T E s

Strong first integral:
¢ (=7)

Reciprocal integrating factor:

V= <z§ H;:] (z—2)(z - Z)) :

21
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is known as the hamiltonian system associated to H. A special case is that
of second order differential equations of type (11) arising from conservative
mechanical systems. In this case one has

Ha) = ¥ +Gla), (38)

where G(z) = [ g(s)ds, so that the plane system, equivalent to the differ-
ential equation (11), is

If 2:g(x) > 0 for small = # 0, then O is a centre of (39). The main result
concerning system (39) is due to Urabe [101] (see also Opial [75], Levin
and Shatz [59]). If zg(z) > 0 for small z # 0, the transformation

X = () = sgn(a)v/2G (), (40)
admits an inverse in a neighbourhood of 0:
z=p "(X). (41)

The function p~'(X) plays a key role in Urabe’s characterization of
isochronous centers of (39).

THEOREM 7.1. System (89) has an isochronous center at the origin with
constant period w if and only if there exist scalar functions o(X),7(X) de-
fined in a neighbourhood of 0, such that:

(i) o is odd, continuous, Xo(X) is of class C', o(0) = 0;
(ii) 7 is even, continuous, X7(X) is of class C', 7(0) = 0;

(iii)

27 X
(X)) == ;
9 ) = T () 4 7(%)
(iv) for every r > 0, foﬂﬂ 7(rcos)dp = 0.

The most relevant consequence of theorem 7.1 is the following corollary
(see Urabe [101]).

COROLLARY 7.1. Let g be an odd analytic function. Then system (39)
has an isochronous center at the origin if and only if g(x) = k2z, for some

keR, k0.
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The following theorem was proved independently by Amel’kin [3] and
Chicone and Jacobs [27].

THEOREM 7.2. Let g be a polynomial. Then system (89) has an iso-
chronous center at the origin if and only if g(x) = kz, for some k € R,
k#0.

Both corollary 7.1 and theorem 7.2 can be proved following a different
approach, developped recently by Cima, Manosas and Villadelprat [32].
Let us define a strict involution as an analytic function v : R — R such

that v(0) = 0, v(v(2)) =z, v(z) Z =.

THEOREM 7.3. Let g be analytic. Then the origin is an isochronous
center of period w of (39) if and only if there exists a strict involution ~
such that

71'2

G(x) = - (x — ()

T 2u?
for all x € R.

Theorem 7.3 gives a simple procedure to construct systems of type (39)
having an isochronous center, with g(x) analytic, non-odd and non-polynomial.
If g(x) is nonlinear, a great variety of situations can occur. In fact, Urabe
[102] proved that for every continuous, positive scalar function A : R™ — R

there exists a gx(z) : RT — R such that the differential equation

4 gx(z) =0 (42)

has a center with period function given by A (see also [113]).

An analogous to Theorem 7.2 does not hold for plane hamiltonian sys-
tems: there exist nonlinear polynomial hamiltonian systems with isochronous
centers. A method to produce them consists in transforming a linear center
into a nonlinear one by means of a nonlinear polynomial canonical trans-
formation having a polynomial inverse. Such transformations are a special
subclass of a wider family of maps, that are the object of a celebrated con-
jecture, known as the Jacobian Conjecture.

Jacobian Conjecture Let ® : C" — C" be a polynomial map with
constant non-vanishing jacobian determinant. Then ® is a global diffeo-
morphism and its inverse is a polynomial map.

Such a problem was studied in several different settings (see Bass, Connell
and Wright [8]). Tt is known that it is equivalent to solve it in R™ or in
C™, and several partial results have been proved, but the conjecture is
still unproved Vn > 2. The Jacobian Conjecture motivates the following
definition.
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DEFINITION 7.1. A map ®(z,y) = (P(z,y),Q(z,y)),® € C'(U,R?), U
open connected subset of the plane, is said to be a jacobian map if

[o) o) id
Jo :—det<?,5 §5>Ec¢0, ceR. (43)
Ba By

There exists a natural relationship between the study of the Jacobian
Conjecture and the study of hamiltonian isochronous centers. Before de-
scribing it, we report a result by Vorob’ev [109], concerned with general
systems, not necessarily polynomial (see also [107, 108, 110]).

THEOREM 7.4. Let ®(z,y) = (P(z,v),Q(z,y)),® € CY(U,R?), be a
map defined on U, open connected subset of the plane, P(0,0) = Q(0,0) =
0, Jo(0,0) =1, Jo(z,y) > 0 for all (x,y) € U. Then the system

. 1P+ Q) . 1P +@Q%

has an isochronous center at O.

If ® is a jacobian polynomial map, Vorob’ev theorem gives a class of
polynomial hamiltonian isochronous centers. Next theorem was proved by
Sabatini [88].

THEOREM 7.5. Let ® € C'(R2%,R?) be a polynomial jacobian map such
that ®(0,0) = (0,0). Then the origin is a global center of system (44) if
and only if ® is a global diffeomorphism of the plane onto itself.

By theorem 7.5, it is equivalent to prove the Jacobian Conjecture in R?
and to prove that a critical point of every system of the type (44), under
the assumption that Je = ¢ # 0, is a global isochronous center.

For a study of the relationship between isochronous singular points and
the jacobian conjecture in a complex setting, see Gavrilov [49].

If ® is a jacobian map, then the corresponding hamiltonian system (44)
has odd degree. In Mardesi¢, Moser-Jauslin and Rousseau [67] it is proved
the hamiltonian systems obtained from a quadratic jacobian map are the
only cubic hamiltonian systems with a Darboux linearization. In fact,
for every system arising from a jacobian map ®, ® is a linearization (see
Sabatini [88]). In case ® is injective, it is a global linearization.

Cubic hamiltonian systems with isochronous centers have been classified
by Cima, Mafosas and Villadelprat [32]. Every cubic hamiltonian system
with an isochronous center at the origin is of the type (44), with ® jacobian
quadratic map (see Meisters [71], for a classification of such polynomial
maps). Cima, Manosas and Villadelprat [32] give also an example of a
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TABLE 2.
Hamiltonian Systems.

System H milton

Hypothesis:

oP2Q 0P 8Q _
oz By — oy 8a = const. # 0.

Cartesian coordinates:
. — poP 2Q
©=r Oy +Q Oy

. P aQ

Transversal commuting system:

P — ap
€r = By

'—7]-"1@_{_@%&
y= oz ox °

Linearization:

x = P(z,y),
n=Q(z,y).
Strong first integral:
I=P?+Q%

Reciprocal integrating factor:
V=P +Q

hamiltonian system with an isochronous, polynomial, non-global center.
The corresponding hamiltonian function is

2
Hiry) = 422G + Dy + o (0 + 1)

In [32] the authors also give a linearization of the above system, that is

defined on all of R2, even if the center is not a global one. The linearization

is not rational.

In next table we collect some facts about isochronous centers of the type
considered in theorem 7.5. It could appear weird that we give a nonconstant
integrating factor for a system with a known first integral H (z,y). Indeed,
the function ﬁ is an integrating factor both for the hamiltonian system
and for its commutator. The first integral of the commutator one gets in
this way is a multivalued function.

A result of non-existence of isochronous centers for a special class of
hamiltonians was proved by Christopher and Devlin [28] and Schumann
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[94]. They proved that a hamiltonian system generated by a polynomial
hamiltonian function of the type

H(z,y) = Q(z,y) + N(z,y),

with Q(z,y) quadratic, and N(z,y) homogeneous of degree > 2, cannot
have an isochronous center at the origin. For the same systems, Gasull,
Guillamon, Marniosa and Mafosas [46] prove that also singular points dif-
ferent from the origin cannot be isochronous. For a weaker result in the
same direction, see Collins [33].

Another result in the same direction was obtained by Villadelprat [103],
by proving that every analytic hamiltonian H that generates an isochronous
center can be written as the sum of two squares

Hz,y) = 5 (f(.9)” + g(r.9)")

where f and g are the components of an analytic area-preserving trasfor-
mation.

8. UNIFORMLY ISOCHRONOUS CENTERS

If all the solutions of system (1) rotate around the origin, and their
angular speed is constant along rays, finding isochronous centers is equiv-
alent to proving the existence of centers. This fact motivates the following
definition.

DEFINITION 8.1. We say that the origin is a wniformly isochronous
center of system (1) if it is a center and, in polar coordinates x = p cos(yp),
y = psin(y), (1) takes the form

p= Oé(PMP)a »= ﬂ(‘p) (45)

Several systems in this class will be considered in next sections: Sa, S5,
CRs, H4,, H5;. In this section we collect some results that hold for sys-
tems of arbitrary degree.

Polynomial systems with ¢ independent of r have been studied by Conti in
[36], showing that the only polynomial systems having uniformly isochronous
centers are those ones with ¢ = k € R, k # 0. Polynomial systems with an
uniformly isochronous center can always be written in the following form

T =y+zP(z,y), y=—x+yP(z,y), (46)

where P is a polynomial.
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System (46) can neither be a hamiltonian, nor a complex system. Let us
set:

n—1
P(z,y) = pa" 'y,
=0

where n is the degree of (46). The following theorem is due to Conti [36] and
characterizes systems (46) with a center, when P(z,y) is a homogeneous
polynomial (see also [28], [70]).

THEOREM 8.1. Let P(x,y) be a homogeneous polynomial. Then the ori-
gin is an isochronous center of system (46) if and only if one of the following
18 true:

(1) system (46) has even degree;
(ii) system (46) has odd degree n =2m + 1, and

2m 2m
> p / (cos p)*™ ! ip(sin p)'dip = 0.
=0 70

When O is an isochronous center of system (46), the orbits of (46) are
contained in algebraic curves. Moreover, O cannot be a global center of
(46) [36].

Collins [34] has studied a class of systems of the type (46), with P(z,y) =
ax + By + Ax? + Bxzy + Cy?. He has proved that such systems have an
isochronous center at O if and only if

A+C =0, Ao’ + Baf + CB* = 0. (47)

In this case there exists a rotation taking the system into a system of
the form

i=-y+2*(a+by), y==z+azyla+by), (48)

where a,b € R. Linearizations of such systems have been given in Mardesi¢,
Rousseau and Toni [68].

Uniformly isochronous systems - not necessarily polynomial ones - have
been studied also in Mazzi and Sabatini [70], looking for commutators and
linearizations of systems of the type

&= —y+zH(z,y), y=z+yH(z,y), (49)

where H(0,0) = 0. Since system (49), can be seen as a linear system
perturbed by a radial nonlinearity, one can look for a commutator of the
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same type:
t=z+2K(z,y), y=y+yK(zy). (50)

In this case the commutativity condition reduces to a single partial differ-
ential equation in H and K:

K - K

DK OH 0K L OHY (oK oM oK | ony
Oy Ox Oox Oox Oxr Oy Oy oy )

(51)

so that computations are greatly simplified.

Even if one does not know all the solutions of equation (51), for every
couple of H and K satisfying equation (51) one can give a linearization
of both system (49) and system (50), and a first integral of system (49).
Theorems 8.2-8.5 have been proved in [70]. Let us set

K (scosp, ssinp) i )
s .

QO =0 i = —
(x,y) (r cos @, rsin @) exp( /05(1+K(scos<p,ssin<p))

(52)

THEOREM 8.2. Let H(x,y) and K(x,y) satisfy the equation (51). Then
the transformation

x(@,y) =z Uz,y),  nlz,y) =y Uz,y), (53)
linearizes both (49) and (50). Moreover, the function
I(z,y) = (2° +y*)Qz, y)*, (54)

is a first integral of (49).

In next theorem a couple of solutions to the partial differential equation
(51) is provided.

THEOREM 8.3. Let H(z,y) = zo(y) and K (z,y) = yo(y), where o(y) is
a function of class C2. Then system (49) and system (50) commute, and
O is an isochronous center of system (49).

For o(y) = a, one obtains one of Loud quadratic centers (see system Ss,
section 10), while for o(y) = (a + by) one obtains Collins’ systems (see
system CR,, section 12). The linearization and the first integral for this
special case are given in next table.
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TABLE 3.
System U, .

System U,
Cartesian coordinates:
& =—-y+z’0(y),
§= o+ ayoly).

Polar coordinates:
7 =12 cos ¢ o(rsin @),
=1
Transversal commuting system

&=z +zyo(y),
=y +y’a(y).

Linearization
_ (Y _a(s)
Xfmexp( 1o 1+SG(5)ds) ,

1N = yexp (—. (;y ]fs(;zs)ds) .

Strong first integral:
H= (2> 4y exp (f Y _20(s) d‘;).

Jo l4so(s) "

Reciprocal integrating factor:
V=(2"+y’) (1 +yo(y)).

29
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The structure of equation (51) allows to give other classes of special
solutions. In particular, if H and K are conjugate harmonic functions, the
first two terms in each of the parentheses in equation (51) vanish. In this
case we have a necessary and sufficient condition for system (50) to be a
commutator of system (49).

THEOREM 8.4. Let H and K be conjugate harmonic functions. Then
system (49) and system (50) commute if and only if there exists a function
0, such that

H?(w,y) + K2 (2,y) = 6(2* + y?). (55)

Another possibility arises assuming H and K to be homogeneous func-
tions of the same degree d > 1. In this case the commutativity condition
is very simple

0K 0K _

Ry _4H.
may yam d (56)

If H is a homogeneous harmonic function, then the origin is an isochronous
center (see Mazzi and Sabatini [70]).

THEOREM 8.5. Let H and K be homogeneous conjugate harmonic func-
tions. Then system (49) and system (50) commute and O is an isochronous
center.

This means that if H is a homogeneous and harmonic polynomial, Conti’s
conditions are satisfied (see theorem 8.1). The same conditions for systems
with homogeneous nonlinearities have been found in Mazzi and Sabatini
[70] by the commutator approach. In this case the linearization assumes
the simple form

x=a(l+K@y) " a=y QK@) (57)
where d is the homogeneity degree of H. A first integral is

_ (.’L’2 +y2)d
19 = K w)

9. NON-HAMILTONIAN SECOND ORDER O.D.E.’S

In this section we are concerned with second order differential equa-
tions which are not equivalent to systems of the type (39). Volokitin and
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Tvanov [106] have proved that, for every positive integer m, the origin is an
isochronous center of the equation

F4+2?m (2 +32%) 4z =0. (59)

They also proved that every polynomial commutator of the system

2m—1

=y, g=-z—2"" y@@®+y?), (60)

equivalent to (59), can be obtained from (60) by multiplying by a suitable
real constant. That is, (60) has only trivial polynomial commutators.

Volokitin and Ivanov [106] prove also a similar result for the so-called
Newtonian systems

=y, §=q@) +ta@y+. .. +a@)y", (61)
where n is a positive integer, and ¢o(0) = 0.

THEOREM 9.1. Ifn =2 orn > 4, then (61) does not have non-trivial
polynomial commutators.

The case n = 1 corresponds to the so-called Liénard differential equation
i+ f(x)z + g(x) =0, (62)

that appears in several problems in applied mathematics. It has been the
object of several investigations, and has often provided motivations for the
development of new techniques (see [10, 92, 72]). We assume ¢(0) = 0, so
that the origin is a critical point for the equivalent plane system

=y, g=—gx) —yf(z). (63)

Cherkas [24] gave necessary and sufficient conditions for the origin to
be a center of (63), when f and g are analytic functions (see also Gasull
and Torregrosa [48] for an extension). On the other hand, only recently
the isochronicity problem received significant contributions. Next theorem
has been independently proved by Algaba, Freire and Gamero [2] in the
polynomial case, by Christopher, Devlin and Lloyd [29] and Sabatini [90]
in the analytic case. We recall that if f(x) and g(z) are odd, then (63) is
reversible with respect to the y axis.

THEOREM 9.2. Let f(x) and g(x) be odd analytic functions, with xg(x) >
0 in a neighbourhood of the origin. Then O is an isochronous center of (63)
if and only if g'(0) > 0 and:

9@) = ¢ (O + (/ sf(s)ds> . (64)
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If f(z) and g(z) are odd functions of class C', then the equality (64) is a
sufficient condition for the isochronicity of O [90]. In fact, in this case one
can study the solutions of (62) by means of the non-traditional equivalent
plane system

T =y —xB(z), = —x—yB(x). (65)

where 2?B(z) = [\ sf(s)ds, C(z) = g(z) — xB*(z). When f(z) and g(z)
are odd, and (64) holds, the origin is a uniformly isochronous center of
(65). If, additionally, f(z) = —(k + 2)z* for some positive integer, one can
find a polynomial commutator, a linearization and a rational first integral
of (65) (see Mazzi and Sabatini [70]).

In the non-reversible case, the equality (64) cannot be a condition for
the isochronicity of (63) , since there exist analytic systems of type (63),
with f =0, g non-odd, and an isochronous center at the origin [101, 32].

In [2] several special cases of non-odd polynomial Liénard systems have
been considered, proving, in those cases, the non-existence of isochronous
centers when f(z) and g(z) do not satisfy the equality (64). In [29] the
authors claim to have proved, by means of a computer assisted procedure,
the non-existence of isochronous centers of the polynomial Liénard equa-
tion, if the degrees of f(z) and g(z) do not exceed 27. In both papers it
is conjectured that isochronous centers of polynomial systems occur only
when f(z) and g(z) are odd.

The case n = 3 of newtonian systems corresponds to the so-called Abel
systems. The following theorem is due to Volokitin and Ivanov [106].

THEOREM 9.3. A polynomial Abel system has a nontrivial polynomial
commutator if and only if it has the form
t=y. y=—(r+a2’)(1+h(2)y)’ - 3azy(l+ h(z)y)* + h'(2)y’,
(66)
where a € R and h(x) is an arbitrary polynomial.

Hence, if (66) has a center, it has an isochronous center. The inte-
grability of (66) is proved in the following theorem, that holds also for
non-polynomial systems [106].

THEOREM 9.4. The change of variables

Yy
X=x=x Y= ">~
o 1+ h(z)y’ (67)

transforms (66) into the reparametrized Kukles system

_ Y v — —X —3aXY —a’X?
_lfh,(X)Y’ a 1-h(X)Y ’

X
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that has a center at the origin.

For a very special case of a fourth-degree system with an isochronous
center, equivalent to a second order differential equation, see Kononova
[57].

10. QUADRATIC SYSTEMS

Let us consider a quadratic system of the form
T = -y =+ (l20$2 + azry + 002y2, y =x + bQQ.’L’2 =+ b]].’IIy =+ b02y2(69)

In polar coordinates 2z = rcos(p), y = rsin(yp), we can write system (69)
in the form

’f‘ = TQ(R3 COS(S(,O + @3) + R] COS((,O + (10]))7

¢ =14+r(—Rgsin(3¢ + @3) + r1 sin(p + ¢1)). (70)

Let the origin be a center. The problem of isochronicity of such system
was studied by Loud [64]. He proved

THEOREM 10.1. The origin is an isochronous center of the quadratic
system (69) if and only if the system can be brought to one of the following
systems (S1), (S2), (S3), (Sa), through a linear change of coordinates and
a rescaling of time.

One can find strong first integrals, linearizing change of coordinates and
phase portraits in the Poincaré disc for these systems in Mardesi¢, Rousseau
and Toni [68]. Sabatini [85] gave the transversal commuting systems for
these systems.

11. CUBIC SYSTEMS WITH HOMOGENEOUS
NONLINEARITIES

Let us consider a cubic system (3) of the form

&= —y + a3z’ + an z’y + a122y> + agsy®, (71)

:l] =+ b30£133 + b21w2y + b12$y2 + b03y3.
In polar coordinates x = rcos(p), y = rsin(p), we can write system (71)
in the form

7 =1*(Rqcos(4¢ + 1) + Ro cos(¢ + ¢2) + Ro),

@ =1+7r*(—Rysin(dp + p4) + rasin(¢ + @2) + o). (72)
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TABLE 4.

Quadratic Systems.

System S;

Cartesian coordinates:
i=—y+a2’ -y’ g=1x(1+2y).

Polar coordinates:
F=r2cosg, p =1+ rsinp.

Strong first integral:

2 2
— z°+y
H = Ty -

Reciprocal integrating factor:
V=(01+2y)2%

Linearization:
— z — y
¢ = ;% where z =z +iy.

Transversal commuting system:
i =a(l+2y),y=y—° +y°.

System S»

Cartesian coordinates:
i=—y+z°, g=2(1+y).

Polar coordinates:
F=r2cosg, p=1.

Strong first integral:

_ 2?42
H= (14+y)2 "

Reciprocal integrating factor:
V=>0+y)"

Linearization:

X= 1 01=

1+y°

Transversal commuting system:
i=xz(1+y),y=y(l+y).

System S3

Cartesian coordinates:

b=y t2* g =a(l 1Oy

Polar coordinates:
i = r>(cos 3p — % cos ),
$=14+r(—sin3p —sinyp).

Strong first integral:
H = 9(z24y2)— 2422y +162*
- —3+16y :

Reciprocal integrating factor:
V = (3 — 16y)(9 — 24y + 322%).

Linearization:
3y —4z?
9—24y+3222 "

_ 3z _
X = 9—24y+32z2° n=

Transversal commuting system:
& = 3z(9 — 24y + 32z7),
7 = (3y + 42)(9 — 24y + 322%).

System S,

Cartesian coordinates:
i=—y+ 92’ — 397 g =21+ 3y).

Polar coordinates:
7 = r’(cos 3¢ + 22 cos ),
@ =1+r(—sin3p + :siny).

Strong first integral:

H = 9= +y®) 424y 16y?
(3+8y)* )

Reciprocal integrating factor:
V = (34 8y)(9 + 96y — 25622 + 128y?).

Linearization:

3y+4y°
(3+8y)2"

— 3z —
X = (3+gy)27 n=

Transversal commuting system:
&= 2(3+ 8y)°,
y=yB+4y)(3+8y).
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TABLE 5.
Homogeneous Cubic Systems (T).
System Sj System S3
Cartesian coordinates: Cartesian coordinates:
t=—y+22 -3z}, y=z+32%y—1>. | i=—y+2® -y’ y=2+2%y — o>
Polar coordinates: Polar coordinates:
7 =1rcos2p, ¢ =1+ r’sin2p. 7 =1r3cos2p, ¢ = 1.
Strong first integral: Strong first integral:
_ (22442)? 2242
H= 1+4l.;y : H= 1+2.:y'
Reciprocal integrating factor: Reciprocal integrating factor:
V= (22 4+ 97>, V= (14 2zy)>.
Linearization: Linearization:
_ z _ . — T — Y
(= l_HQ,wherezfm—{—zy. X= Jireay 1= Jiiaey
Transversal commuting system: Transversal commuting system:
t=x4+32% —y>, §=y— 2+ 3z°. T =x(1+2zy), y = y(1 + 2zy).

Let the origin be a center. The problem of isochronicity of such system
was studied by Pleshkan [76]. He proved the following theorem.

THEOREM 11.1. The origin is an isochronous center of cubic system (71)
if and only if the system can be brought to one of the following systems (ST ),

(S3), (S3), (S3), through a linear change of coordinates and a rescaling of
time.

One can find strong first integrals, linearizing change of coordinates and
phase portraits in the Poincaré disc for these systems in Mardesi¢, Rousseau
and Toni [68]. Mazzi and Sabatini [70] and Gasull, Guillamén and Manosa
[45] gave transversal commuting systems for these systems.
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TABLE 6.
Homogeneous Cubic Systems (IT).

System Sz

Cartesian coordinates:

&= —y+ 327y, g =z — 223 4+ 9zy>.

Polar coordinates:
= r®(—sin4p + £ sin 2¢),
¢ =1—12(cos 4p + cos 2¢).

.
|

Strong first integral:

2,2 4 6
_ x4y -4z 44z
H= (—14322)3

Reciprocal integrating factor:
V=(1-32%"

Linearization:

_ z—22% Y

(1—322)3’ = (1-322)

3 -
2

Transversal commuting system:

& =xz(1 - 32%)(1 — 2z?),
g =y —32%)(1 — 627).

System §§

Cartesian coordinates:

&= —y— 3%y, y =z + 2% — 9xy>.

Polar coordinates:
i = r®(sin 4 — 2 sin 2¢),
¢ =14 72(cos 4p + cos 2¢).

Strong first integral:

2 2 4 6
_ zo+4y“+4az" +4z
H = (14322)3

Reciprocal integrating factor:
V= (1+3z%)"

Linearization:
:r,+2:r,3 _ Y
= =, =
(143z2)2 (143z2)

T -
2
Transversal commuting system:
& =x(1+ 32?)(1 + 22%),
9 =y(1+32%)(1 + 627).




A SURVEY OF ISOCHRONOUS CENTERS 37

12. CUBIC REVERSIBLE SYSTEMS

In this section we study isochronous centers of cubic systems reversible
with respect to a line passing through the origin. The general form of this
systems in polar coordinates is given in Theorem 4.1 (ii). In the particular
case m = 3, we have

7 = r?(R3 sin 3w + Ry sinw) + 73(Ry sin 4w + R sin 2w), (73)
w=1+7(R3cos3w + 71 cosw) + 7?(Ry cos 4w + 73 €08 2w + 1),

where R4, R3, Ro, Ry, 12, 71, and rg are arbitrary coefficients.

A general theory for such systems has not yet been developped. There
are partial results concerning particular cases. The results of this section
are due to Chavarriga and Garcia [12].

12.1. Cubic Reversible Systems with R; = 0 and R, # 0.

Let us consider system (73) with Rz = 0 and R4 # 0. The results of this
section were obtained by means of complex computer algebra procedures.
The outcome of such computations can be summarized in next statement.
Statement 1. The only reversible cubic isochronous systems (78) with

R3 = 0 and R4 # 0 are the cubic isochronous systems given by Theorem
11.1.

12.2. Cubic Reversible Systems with R; = R, = 0.

Let us consider system (73) with R3 = R4 = 0. The following result
holds.

THEOREM 12.1. The origin is an isochronous center of cubic system
(73), reversible with respect to a line passing through the origin, with Rz = 0
and Ry = 0 if and only if system (73) can be brought to one of the following
systems (CRy), (CRz), (CR3), (CR4) and (CRs) by a linear change of

coordinates and a rescaling of time.

12.3. Cubic Reversible Hamiltonian Systems.

If system (73) is hamiltonian, that is if r; = 3R; and ro = 2R,, the
following result holds.
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TABLE 7.
Cubic Reversible Systems CR1 and CRa.

System CR1

Cartesian coordinates:
& =y(=1+ 2Rz + 2R>z?),
§=x 4 Ri(y® — %) + 2Ry’

Polar coordinates:
7 = Ry sin pr? 4+ Ry sin 21,
¢ =1— Ry coser.

Strong first integral:

_ 224y
H = 1—2z(R1+Raz) "

Reciprocal integrating factor:
V = (1 —2z(Ri + Raox)) (2 + 3%).

Transversal commuting system:
&=z — Riz”> + Riy® + 2Razy?,
y=y(l — 2Rz + 2Roy?).

System CR2

Cartesian coordinates:
& =y(=1+ Riz + 2Ro2?),
=2+ Riy®> + 2Roxy’.

Polar coordinates:
7 = Ry sin r? + Ry sin 2¢r°,
p=1

Strong first integral:
H = (2 +y")U(z,y),

where U(z,y) =expf 713(5;jff;:;2 dx

Reciprocal integrating factor:
V= (1 — Rix — 2R2x2) (z% +y?).

Linearization:

X =2z\/U(z,y), n=y\/U(z,y)-

Transversal commuting system:
& =2(1 — Rix — 2Ro2?),
9 =y(1 — Riz — 2Raz?).
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TABLE 8.
Cubic Reversible System CRg.

System CRg3

Cartesian coordinates:
& =y(=14 2Rz + 3R2x> — Ray®), y = — Riz® + Riy® — Roz® + 3Roxy”.

Polar coordinates:
7 = Ry sinpr? 4+ Rysin2¢r®, ¢ =1 — Ry cos pr — Ry cos 21>,

Strong first integral:
H=T[., f, where fi = (R1 — A)? + Ra(R1 — A)z + R3(2? +y?),
fo=(Ri+A)? 4+ Ra(R1 + Az + R3(z® +4?), fa = 2° +y* and
A = \/R% + 4R, A= —1 *Rl/A, Ay =—1 -|-f31/A7 A3 = 2.

Reciprocal integrating factor:
V = (22 4+ y*) (=14 2Rz — R} (2> + y*) + 2R (2> — 3%)
—2R1Rex(z” +y”) — Ry (2" +y°)?).

Transversal commuting system:
=2 — Riz®> + Riy® — Rox® + 3Roxy®, § = y(1 — 2R1x — 3R22% + Roy?2).
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TABLE 9.
Cubic Reversible System CRy4.

Ry—7
H= (2 +y)(1+2rnz + i +y ))—311”; (r

System CRa4

Cartesian coordinates:
i =y(—1+ (R —r)z +ri(r1 + Ri)(a” — y%)),
g =x+riz® 4+ Riy® + 2ri(r1 + Ri)xy®.

Polar coordinates:
7 = Risingr® 4+ 3ri(r1 + Ry)sin 2¢r®,
p=14ricospr+ %rl(rl + R1)(1 — cos 290)7"2

Strong first integral:
— Ry + (R} — ri)a+

1+R1)
+ri(ri + Ri)*(2” +y°)) S if Ry # 1
— -772+,1Jz 2riz—1 _ . 0o
H = a2 @2y P T$(m2+y2)] if Ry = r1. Notice that H € C™.

V= (2" +y) (1 +2mz+ri(z® +y°))(r

i=x— Riz? frly + 2r1

g=y(1+(r1—

+(r +R1)y )+

i= (22 +y)(x+ri(z2 — ),y

Reciprocal integrating factor:
— Ri + (R} —rDx 4+ r1(r1 + R1)? (2> + 4°)).

Transversal commuting system:

r1+R1 (RlT +r1y )+r2(”+};11)

(' —y"),
7f R1 7é T135
R1)’I‘ +’I"1 T1+R1 ((3R1 — 7"1)’1‘ =+
2r? (T1+R1)
(2?4 y?)

=y(z> +y*)(1 + 2rz) if R =r1.
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TABLE 10.
Cubic Reversible System CRJ5.

System CR5

Cartesian coordinates:
&= —y(l—z)(1—2z),5=1x— 22> 49>+ 23,

Polar coordinates:
7 = sin pr?,
@ =1—2cospr+ (1 + cos 2¢)r>.

Strong first integral:

_ @12 (% 4y
H= (2z—1)2 .

Reciprocal integrating factor:
V=_0—-z)1-2z)(z*+y?).

Transversal commuting system:
i = (1—2)(z—222+2y°+22°% —224?)

1—2z ?
. (1—z2)y(1—dz+623+2y2)
Y= 1—2z -

41
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TABLE 11.

Hamiltonian cubic reversible system.

System CRH

Cartesian coordinates:
E=y(-1+ 52— 29°), 9 =2 — 39"

Polar coordinates:
7= (—3sinp +sin3¢)r® + 2(—2sin 2p + sin dp)r®,
@ =1+ (—cosp+cos3p)r + 5(12 — 16 cos 2¢ + 4 cos dp)r.

Strong first integral, and reciprocal integrating factor:
H =9y> + (3z — 4y°)”.

Linearization:
X=x- 3y, 1=y
Transversal commuting system:
E=z+3y°, =y

THEOREM 12.2.  Fvery hamiltonian cubic system (73), reversible with
respect to a line passing through the origin, having an isochronous center
at O can be transformed by a linear change of variables and a rescaling of
time into system (CRH).

13. POLYNOMIAL SYSTEMS WITH HOMOGENEOUS
NONLINEARITIES

We consider the system

where X (z,y) and Y;(z,y) are homogeneous polynomials of degree s, with
s> 2.

By applying Lemma 4.1 we can write system (74) in polar coordinates,
T =Trcose, y =rsinyp, as

7 =Py(o)r®, p=1+Qs(p)r* ", (75)
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where P;(p) and Qs(p) are trigonometric polynomials of the form (22).

In this section we give an account of the known isochronous centers of
system (74) when s =4 and s = 5.

13.1. Computation of Isochronous Constants.

Let the origin be an isochronous center. By theorem 3.3, there exists an
analytic change of coordinates x = = + o(| (z,y) |), n = y + o(| (z,y) |)
such that ¥ + x = 0 and 79 + n = 0, where we have taken k£ = 1 making a
rescaling of the time. Let x = H(r, ) a power series of the form

H(r,) = Hi(¢)r + Ha(p)r” + Ha(o)r® + ...,

where Hi(p) = cosgp and H;(p), i = 1,2,..., are homogeneous trigono-
metric polynomials of degree i. Imposing H + H = (0 we obtain a recursive
system of differential equations given by

H! + H, =0, k=1,...,s—1, (76)

Hig oy + Hisonyn +2QHi +

(2kP, + Q') H, + kP!Hy = O,with k=1,....5 1, (77)
Hioysm1y+k T Himt2)(s—1)+k + 2QH (G, 1y (sm1)p0t
2(m+1)(s—1) + k)P + Q) Hfm+1)2(571)+k+
((m+1)(s = 1) + k) PyH (1) (s— 1)1 + Qe (1)1 p
((2(m(s = 1) + k) + (s = 1) PuQu + QuQ) Hlyy 1)+
(m(s = 1) + k) (((m +1)(s = 1) + k) P} + PiQs) Hpn(s 1)45 =
Am2)(s—1)+k COSP + Brmyays—1)4x sing if (m +2)(s — 1) + k is odd;
0 if (m+2)(s— 1)+ k is even;

where k = 1,....,s — 1, m = 0,1,..., ' = % and Hy(p) = cosp. The
constants (m42)(s—1)+k and B(m42)(s—1)+k are the isochronous constants.
These equations can be considered as s — 1 families of independent differ-

ential equations.

Since the functions H;(y) must be trigonometrical polynomials of degree
1, the only possible solutions of equations (76) are

ay, cos(p) + bg sin(yp) if k is odd;
Hy(p) = k=1,...,s—1,
0 if k is even;

where a; and by, k =1,...,s — 1, are real constants (in particular, a; = 1
and by = 0). It is obvious that all equations of (76) are equal, and only



44 J. CHAVARRIGA, M. SABATINI

the initial conditions change. Due to the special structure of the systems
involved, we can assume, without any loss of generality, that a; =1, b, =0
and a = b, =0, k=3,...,s — 1.

13.2. Isochronous centers of a linear center perturbed by
homogeneous polynomials of degree 4
For s = 4 system (75) takes the form

i=Py(o)rt, ¢ =1+ Qup)r?, (78)
where

Py(¢) = Rscos(5p + ¢5) + R cos(3p + ¢3) + Ry cos(¢ + 1), (79)
Qa(p) = —Rssin(5¢ + ¢5) + r38in(3p + @3) + 71 5in(p + 1)

The reversibility conditions for system (78) are @1 = @1, @3 = @3, 5 =
5p1 and @3 = 3¢1. The following theorem, due to Chavarriga, Giné and
Garcia [19], characterizes reversible isochronous centers of system (78).

THEOREM 13.1. A necessary condition for the origin of system (78) to
be a reversible isochronous center is that the system can be brought to one
of the following systems (H41), (H4s), (H43), (H44), (H45), (H4g) and
(H47) through a linear change of coordinates and a rescaling of time. The
condition is sufficient for systems (H4,), (H4s), (H43), (H44), (H45),
(H4g).

For system (H47), it is not known how to prove the isocronicity of the
origin for all values of r3. For this reason we are going to consider particular
cases of this family.

First we consider some particular systems of family (H4;) that have
a transversal commuting system. Chavarriga, Giné and Garcia [19] have
found three cases: for r3 = %, r3 = f% and r3 = —3. These system
have a reciprocal integrating factor of the form V(z,y) = (P(z,y))® where
P(xz,y) is a polynomial in the variables (z,y) such that P(0,0) # 0, and b
a rational number.

They have studied also the systems that have particular polynomial solu-

tions and they have found that for r3 = % andrs = — 85—7 there are algebraic



A SURVEY OF ISOCHRONOUS CENTERS 45

TABLE 12.

Cubic reversible systems (I).

System H4;

Cartesian coordinates:
T = -y + (R1 =+ R3).’E4 =+ (R] — 3R3):1:2y2,
9 =x(14 (R1 + R3)zy + (R1 — 3R3)y®).

Polar coordinates:
7 = 1*(R1 cos ¢ + Ra cos 3¢),
=1

Strong first integral:
_ (@%4y*)®
H = (U(z,y))?
where
U(z,y) =14 3(R1 + R3)x’y+
+(3R1 — R3)y3.

Reciprocal integrating factor:
V= (2> +y*)U(z,y).

Linearization:
X = e, = .
(U(z,y))3 (U(z,9))3

Transversal commuting system:
&= zU(z,y),
y=yU(z,y).

System H4,

Cartesian coordinates:

. 4.4 40,2 2 4,4
T=—-y—gr —FxY +3Yy,
- 20,.3 28 .3
y7m+3m Yy — 5Ty

Polar coordinates:
7= 1“4(% cos3p — L cosp),

¢ =1+7r(sin3p — L sing).

Strong first integral:
22442

H(z,y) =

where
U(z,y) = 9+ 242y + 16z*y>
—24y3 + 322%y* + 16y°

Reciprocal integrating factor:
; 2 5
V(w,y) = (2" +y")*(U(z,y))7.

Transversal commuting system:
i =2(3-16y") (2" +9")(Ulz,y)) %,

y=yB+ 1227y — 4°)(2” + ) (U(z,y))~

1 22142 _5
U(e,y) 8+ [0y (a,y) 78

dx

1
6
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TABLE 13.
Cubic reversible system (IT).

System H43

Cartesian coordinates:

. 16,4 28, 2 2 , 4 4
T=-Y— 57T ;jm Y ':tgya
- 8 16

Yy=x+ g’y — 5TY".

Polar coordinates:
i =1*(—1cos3p — 2 cos ),
¢ =1+7r(sin3p — §sing).

Strong first integral:
H = %, where
Ui(z,y) = —3 + 8z%y + 8y°,

Us(z,y) =9 — 24y + 162%y" + 16y5.

Reciprocal integrating factor:
Viz,y) = (2% + y*>)Ur1Us

Transversal commuting system:
i = z(3 — 822y — 163> U1 (2, y),
y =y +42”y — 4y*)Ui(z,y).

System H44

Cartesian coordinates:

s 4.4 202 2
rT=-—y+qr — FrY,

. 40,3 16, 3
y—:r—l—ﬁx y—i-?a;y .
Polar coordinates:

LAy 1 7
7 =1"(—3c083p + g cos p),
¢ =14 73(sin 3¢ + sin ).

Strong first integral:
H(x,y) = 7(12+;’:)3Uz, where
Ui(z,y) =9+ 24y(z? + y?) + 3227 (2 + y?)?,
Us(z,y) = 9+ 162° + 2422y + 16z*y>

Reciprocal integrating factor:
V(z,y) = (2° + y*)UiU2

Transversal commuting system:
& = x(3+8z°y)Un (x,y),
y=(3y — 122" — 42”y*)Ur(z,y).
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TABLE 14.

Cubic reversible system (III).

System H4;s

Cartesian coordinates:
&= —y+ (r3s + Ri)z* — (6r3 + 2R1)x>y* + (r3 — 3R1)y*,
9 =a+ (4Ry + 4r3)zy + (4Ry — 4r3)zy.

Polar coordinates:
7 = r*(r3 cos 3p + Ry cos @),
¢ =14 7r3(rasin 3¢ + 3Ry sin ).

Strong first integral:

H(z,y) = @+y?)? g — 2 _ 3
T,Y) = “Uay where U(z,y) =1+ (6R1 +6r3)z”y + (6R1 — 2r3)y”.
6

This first integral in polar coordinates is H(r,p) = T30
From H(r,¢) = C, where C is an arbitrary real constant different from zero,

3 _ QUo)EVQ(e)2+C

we can write r ol
From the differential equation ¢ = 1 + r*Q() we obtain

— [?7 dy — [?7 Q(e) — 2 Q(p)de
T(r)= [, 5550 = 1o (1im)d¢72wifo \/mfh.

It is easy to see that the last integral is zero making
the change w = —p and using the periodicity of Q(¢).
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TABLE 15.
Cubic reversible system (IV).

System H4g

Cartesian coordinates:
&= —y, y=x+ 42y + dzy>.

Polar coordinates:
7 =r*(=cos3p + cos ), p =1 + r3(sin 3¢ + sin ).

For this system we could not find an analytic first integral
but we have found an invariant of the form

3¢ + 413 cos® p = 3t + C,

where C is an arbitrary real constant.
From this invariant we can express the time
in function of the variables (r, ) as follows
t=¢p+ %rgcosgcp— %
If we recall that this system has a center
at the origin and therefore r(0) = r(2m)
in a certain neighbourhood of the origin, we obtain

t(2m) — £(0) = [27 + 2r(2m) — §] — [37(0) — §] =2~

TABLE 16.

Possible isocronous cubic reversible system.

System H4,

Cartesian coordinates:

9—5r3)? 3+473)(5rg —201 5(3+r3)2
( 5402) m4+( 2)(54% )m2y2+ ( 363) y4

T =—y—

. ' 81—5rg)(5r3—9) 5(3+7r3)% |
y:m+( ?;)é 3 )mgyf ( 273) zy®.

1

Polar coordinates:

—1197430r3—

=7 [cos 5 + 284578 cos 3¢ + 208203 cos <p],
— T3 — T2 .
p=1+73 [—sin5<p+rgsin3<p+ %sm@].
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solutions of degree 3 and for r3 = %, r3 = —% and r3 = —% there are
algebraic solutions of degree 6. For the case r3 = 7857 the system have

a reciprocal integrating factor of the form V(z,y) = M; (’I‘,’I/)% Mg(r,u)%
where M;(z,y) and Ms(z,y) are polynomials of degree 3 and 6, respec-
tively.

For system H4,, the transversal commuting system has been found using
particular solutions of the system.

All the systems listed in sections 10, 11 and 12 are reversible. For some
time it was an open question whether every polynomial system with an
isochronous center has such a property (see Mardesi¢, Rousseau and Toni
[68]). Chavarriga, Giné and Garcia gave a counterexample in [19]. Such
a system is not a uniformly isochronous system. The counterexample is a
consequence of the following theorem which gives sufficient conditions for
system (78) to have a center. The theorem is due to Chavarriga and Giné
[15].

THEOREM 13.2. The origin of system (78) is a center in the following
cases

(i)(ﬁl = Y1, Y3 = Y3, 5R3 +3r3 =0 and 5R; +11 = 0.
(i))g1 = o1, @3 = @3, 5 = 51 and 3 = 3p1.
(1) @1 = @1, @3 = @3, 5 = 291 + @3, r3 = 3R3, r1 = 2Ry, Rs = R3
and | R |=2| R3 |.
(iv.l) R3T1 — 3T3R1 = 0,
(iV)(ﬁl = ¥1, (ﬁf; = @3, R5 =0 and (iV2) T = 3R1 and rs = —3R3,
(iV3) r = R] :| 31‘?3 | and T3 = —3R3.

In Theorem 13.1 case (ii) of theorem 13.2 has been studied.

As for the other cases considered in theorem 13.2; the only non-reversible
isochronous center appears in case (iv.1), with 1 = 3R; (see system H4,,
next table).

In the other cases either there are no isochronous centers, or particular
cases of previous theorems or trivial cases.

13.3. Isochronous centers of a linear center perturbed by
homogeneous polynomials of degree 5.

For s = 5 system (75) takes the form

i=DPs(p)r®, ¢ =1+Qs5(p)r", (80)
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TABLE 17.

Quartic homogeneous non-reversible isochronous center.

System H4,

Cartesian coordinates:
z=—-y+ (kiR1 + 7‘3)334 - 4]€2R1$3y — (2k1 Ry + 67'3)=T2.7:’2 — 4ka Ry xyB + (r3 — 3k R])y4’
y =x+ 3k)2R1.’I,‘4 + (4k1R1 =+ 47"3),’[33y =+ 2](72R1,’L‘2y2 + (4k1R1 — 47"3),’[3:(/3 — k2R1y4.

where k1 = cos ¢1 and ko = sin ¢
Polar coordinates:
7 = r*(rs cos 3¢ + Ri cos(p + ¢1)),
¢ =1473(rysin 3¢ + 3Ry sin(p + ¢1)).

Strong first integral:
H = (z2+y%)®
14+6ko R123+6(k1 R1+73)z2y+6ka R12y24+2(3k1 R1—r3)y3 ~

Reciprocal integrating factor:
V = (2% + y*)(1 + 6ka Ri2® + (6k1 Ry + 673)x%y + 6ka Rizy® + (6k1R1 — 273)y).

The strong first integral in polar coordinates takes the form
H(r,p) = W, where Q(p) = 3R1 sin(p + 1) + r3sin 3p.
From H(r,¢) =1/C, where C is an arbitrary real
constant different from zero, we can express r° as follows

3 _ Q(p)*/Q(p)2+C
= Ve

From the differential equation ¢ = 1 + r*Q() we obtain

T

— [?7 dy _ [T Q(e) — 2 Qe)de
T(r)= [, 5em = Jo (1 + \/W) do=2m+ [ Tolyis =

It is easy to see that the last integral is zero making
the change w = ¢ + 7 and using the periodicity

of Q(¢p).




A SURVEY OF ISOCHRONOUS CENTERS 51

where

Ps(p) = Rg cos(6¢ + pg) + Ry cos(dp + @4) + Ro cos(¢ + @2) + Ro, (81)
Qs(¢) = —Resin(6p + p6) + rasin(dy + pa) + rasin(p + p2) + 7.

The reversibility conditions for system (80) are Rg = 0, @2 = @2, ¢4 =
04, p6 = 32 and g = 2pa+ 7. The following theorem, due to Chavarriga,
Giné and Garcia [20], characterizes reversible isochronous centers of system
(80).

THEOREM 13.3. A mnecessary condition for the origin of system (78) to
be a reversible isochronous center is that the system can be taken to one
of the systems (H51), (H55), (H53), (H54), (H55), (H55), (Hb56),(H57)
and (1:157) via a linear change of coordinates and a rescaling of time. The
condition is sufficient for systems (H5:), (H52), (H53), (Hb54), (Hbs5),
(H55) and (H5g).

A transversal commuting system of system Hb5g has been found using
the same method used for system H4,.

Tt is not known whether systems H5; and H 57 have an isochronous cen-
ter at 0. Also no strong first integrals are known.

Analogously to what has been done in the case of quartic non-reversible
isochronous centers, a class of nontrivial and non-reversible quintic isochronous
centers can be obtained as a consequence of next integrability theorem, due
to Chavarriga and Giné [16].

THEOREM 13.4. The origin of system (80) is a center in the following
cases

(i))Ro =0, @2 = @2, @4 = @4, 6Ry +1r4 =0 and 6Ry + 2r5 = 0.

(ii)RO =0, P2 = 2, P1 = Y1, Y6 = 32 and Y4 = 29 + g

(iii)Ro = 0, @2 = ¢2, @1 = 1, 6 = pa + w2+ 5, 14 = Ry = Re,
TQZRQZT‘(), (md|R2|:|R4|
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TABLE 18.

Fifth degree homogeneous isochronous centers (I).

System H5,

Cartesian coordinates:

& = —y+ (4Rs — 2R2)z*y — (2R2 + 4Ra)z>y>,
g =+ (4R4 — 2Ry)z*y? — (2R> + 4R4)zy*.

Polar coordinates:
# = 19 (— R sin 2¢p 4+ R4 sin 4¢),
p=1.

Strong first integral:
_ (224y?)?
H= (U (z,9)?)°
where

U(z,y) = 1+ 4Rsz" + (4R2 + 8R4)z?y>.

Reciprocal integrating factor:
V= (2’ +y")U(z,y)

Linearization:

— T — Y
- 1 7] - 1-
()T (W ()T

Transversal commuting system:
& =zU(z,y),
y=yU(z,y).

System Hb52

Cartesian coordinates:
T=—-y+ %(—93:4 —13z%y% + 4y*),
y=x-+ #(31‘2 — 5y%).

Polar coordinates:
7= —r’(—3sindp — 2sin 2¢),
¢ =147~ cos 4 + cos 2¢p).

Strong first integral:

_ @4y Us(zy)
H= (U1 (x,y) ’

where
Ui(z,y) =1 3(z” +y°)y’,
Us(z,y) = 1 — 4y" + 4(z® + y*)y°.

Reciprocal integrating factor:
V(z,y) = (a* +y" U U>

Transversal commuting system:
& =x(1—62%y* — 10y")Ui(2,y),

g =y(1+22°y" — 24" Ui (z,y).
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TABLE 19.

Fifth degree homogeneous isochronous centers (II).

System Hb53

Cartesian coordinates:
& =—y+y(=sz' + 102y — y"),
g =+ z(z* — 102y + 5y*).

Polar coordinates:

5

7 = —r°sin 4y,

¢ =1+7r"cosdp.
Strong first integral:
H— (@ +y>)*

T 120 62y )

Reciprocal integrating factor:

V= (2" +y") (142" — 627y +y)).

Transversal commuting system:
&=+ z(z? —102%y? + 5y?),
§=y+yGz' - 1027y +y).

System Hb54

Cartesian coordinates:
&= —y+a(z’ - 5y°) (2> + ),
§=z+y6e” —y)(a” +y°).

Polar coordinates:
= 15 cos 2¢,
¢ =14 2r*sin 2¢.

Strong first integral:
H _ (-772+fl/2)4

T 148zy(a24y?)”
Reciprocal integrating factor:
V= (2> + )1+ 8zy(z” + y?)).

Transversal commuting system:
&=z +4y(22” —y*)(2” +y°),
g =y+4z(2y’ - 2°) (2" +y7).
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TABLE 20.
Fifth degree homogeneous isochronous centers (TTT).

System H55

Cartesian coordinates:
&= —y+ L (=1002> + 16y°),

. 20, 4
y=z—Szy .

Polar coordinates:
= 1’(sin 6y + § sindy — L sin 2¢),

=1+ r*(cosbyp — & cosdp + 2 cos 20p).
2 Y—3 Y+ 3 2

Strong first integral:
[Pt 18yH2)
H= (U (z,9))5 ’
where

Ulz,y) =1— 2y

Reciprocal integrating factor:
V=[2"+9°(1 - ¥y’ U(z,y).

Linearization:
5

X:.’I,‘(U(.’I,‘,y))iz, 5
n=y[l- 2y (U(z,y) 5.

Transversal commuting system:
y(1 = Ty U (z,y)-

T
Y

System H55

Cartesian coordinates:

L 20,.4
T=—-Y—3TY,

g =+ 2 (162> — 100y?).

Polar coordinates:
i =1’(sin 6 — § sindy — 2 sin 2¢),
¢ =1+1r*(cosbp + 8 cosdp + 5 cos 2¢).

Strong first integral:
_ [P0+
H= (U (z,9))% ’
where

Uz,y) =1+ Fa*.

Reciprocal integrating factor:
V= [y2 +2%(1+ ?3:4)2] Uz, y).

Linearization:
x=x[1+ 9a"] Ur,y)
n=yU(z,y)) *.

Transversal commuting system:
z=xz(1+ %x“)U(x,y),
. 4
g =y + Fa")U(z,y).
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TABLE 21.
Fifth degree homogeneous isochronous centers (TV).

H= 12+y2

System Hb5¢

Cartesian coordinates:
& =—y+y(—z' — 42’y +y"), § =z + 20y’ (z* — ¢°).
Polar coordinates:
= 1°(—3 sin 2¢),

¢ =1+7r"(—1cosdp + § cos2p).

Strong first integral:
= Ty Where U(z,y) =4 — (z®+9%) In [M}

Reciprocal integrating factor:
V= (2" +y") (1 +y")* +2%") (1 —y*)* +2%y7).

Transversal commuting system:

22y +(1—y?)?

i =a(l—2"y* — 5y")U(z,y),
§=y(1+32%y* — y")U(z,y).
TABLE 22.

Possible fifth degree homogeneous isochronous centers.

System H5~

Cartesian coordinates:
&= —y+ z2°y(4a® - 3y%),
g =+ 3oy’ (—82” + 9y°).

Polar coordinates:
7 = r°(sin 6p — 2 sin 493 sin 2¢),
@ =1+ 1"(cosbyp — cos 2¢p).

System H5,

Cartesian coordinates:
i =—y+ 32°y(92” — 8y?),
g =+ 3oy*(—32” + 4y).

Polar coordinates:
7 = r°(sin 6p + 2 sin 493 sin 2¢),
¢ =1471"(cos6p — cos 2¢).

95
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(iv)Ro =0, @2 = @2, ¢4 = s, Re =0 and

(iV.].) R4'I“2 — 2T4R2 = 0,
(iv2) TOZO,T2:R2:2|R4| and T4:72R4,
(iv.3) 10 =0,7o =Ro, Ry =0and | Ry |=|74].

Analizing cases (iv.1) and (iv.3), two classes of non-trivial and non-
reversible systems appear (see, respectively system H5, and H53).

14. ISOCHRONOUS CENTERS OF A CUBIC SYSTEM
WITH DEGENERATE INFINITY

We consider the system

where X, (z,y) and Yi(x,y), s = 2,3 are homogeneous polynomials of de-
gree s, satisfying #Y3(z,y) —yXz(z,y) = 0 and X2 +Y # 0. Such systems
are a particular class of cubic systems with degenerate infinity. This name
is due to the fact that, in Poincaré compactification of (82), the line at
infinity is filled with critical points (see Sotomayor [100]).

Similar systems have been studied by Chen Guang-Qing and Liang Zhao-
Jun [23] and recently by Gasull and Prohens [47]. In [47] an affine clas-
sification of quadratic systems with degenerate infinity is given. Yasmin
[112] computes the Liapunov quantities for the origin of system (82) in
order to find its maximum order, and the number of limit cycles that can
be produced by a bifurcation. Christopher gives local first integrals or in-
tegrating factors for system (82) in cartesian coordinates. Chavarriga and
Giné [17] show, for all integrable cases of these systems but one, which is a
particular reversible cubic system, that there always exists a local analyt-
ical change of coordinates reducing these systems to integrable quadratic
systems. This result implies, in particular, that all information one knows
about the integrability of quadratic systems is applicable to the considered
systems. This result justifies the name of a paper of Christopher, Devlin,
Lloyd, Pearson and Yasmin [30] entitled Quadratic-like cubic systems.

In this section we list the isochronous centers of system (82). In the study
of this problem polar coordinates have been used because this simplifies
the computation of Liapunov constants. In Lemma 14.2 the expression
of system (82) in polar coordinates is given. In Theorem 14.2 centers of
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TABLE 23.

Fifth degree homogeneous non-reversible isochronous centers (I).

a7

System H5,

Cartesian coordinates:
&= —y+ (Ro +ra)z® — (4R> + 10r4)z>y® + (5r4 — 5Ra)zy*,
g =1z + (BR2 + 5ra)z*y + (4R2 — 107r4)z%y® + (r4 — R2)y°.

Polar coordinates:
7 = 1°(ra cos 4p + R cos 2¢),
¢ =1+ r*(rasindp + 2Ry sin 2¢).

Strong first integral:

o= (x2452)
14+8(Ra+ra)z3y+8(Ro—7r4)ay3 *

Reciprocal integrating factor:
V = (2 + ") (1 + 8(Rz + ra)z’y + 8(R — ra)zy®).

This first integral in polar coordinates takes the form
7,8
I{(T‘7 (p) = W, where
Q(p) = 2Rasin 2 + rasindep. From H(r,¢) = C,
where C' is an arbitrary real constant different from zero,

Q(p)+/Q(p)24+C
——a—.

we can express r like r* = -
From the differential equation ¢ = 1 + r*Q(¢) we obtain

_ (2 dy _ (2~ Q(p) _ 2 Q(p)dy
T =Jo" e = Jo O F oS5 e =22 " Jooete

It is easy to see that the last integral is zero making
the change w = —p and using the periodicity of Q(¢).

= 2m.
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TABLE 24.

Fifth degree homogeneous non-reversible isochronous centers (II).

System Hb53

Cartesian coordinates:
&= —y — dkikox® + (4 — 8k} + 4k3)zy + Skikoxy’ —
—(8 4 8k x> 4+ 12k1 kazy® + (4 — 4K3)y5,
g =x+ 4k} — D)x® — 12k1kazy + (8 + 8k3)x y> —
—8k1kox?y® — (44 4k} — 8k3)zy? + 4k koy®.

where k1 = cosw, k2 = sinw.
Polar coordinates:
7= —2r° sin(2¢p + 2w),

¢ =147r1(—cosdp + cos(2¢ + 2w)).

Strong first integral:

2 2
H(T,y) = 2ty 2 31,2
1 2, 9 (kom—kiy)(kyz—kay) (2k7—1)(==4+y=) Uq (=,9)
5 —k1ko(22+y?) arctan %—(kgm—kly)(22+y2)] = lnI:UQ(m,y)

where Uy o(z,y) = 14 4(kaz — k1y) (2 + %) £ 4(—2® + ki (2 + ¢?)).

Reciprocal integrating factor:
V = (2® 4+ y*)*Ur(z,y)Us2(,y).

Transversal commuting system:
T = (m2 + y2) |:’I' — 4z® + 20k% 25 — 16kiz® — 8k1k2m4y — 16k1kgm4y7
—8x%y? + 36k3xy? — 32kTxy? + 4kixy® + 16kT k32 y > +
+16kszy® — 8k1kax?y® + 16k kox®y® — 16k1 k322> — 4xy®
F16k2zy® — 32k oy® + 4kZzy® — 16k2k2zy" + 16k?k2y5] /H,

9= (2 + %) [y + 16k ki2® — dxty + 20k 2y — 16kizty — 16kI k3 y—
—16k3xty — 8kikox®y® — 16k5kox®y® + 16k K3z y® — 822y + 36k %y —
—16kiz?y® + 4k322y® + 16k k22%y® — 8ki kazy? — 16k3 kozyt—

—4y® + 16k2y° — 16k1y° + 4k§y5] JH.

i
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system (82) are characterized. Lemma 14.2 and Theorem 14.2 are due to
Chavarriga and Giné [17]. See also Sdez and Szdnté [91].

LEMMA 14.2. In polar coordinates © = rcos(p), y = rsin(p) system
(82) has the form

= Poo)r’ + Py(o)r®, ¢ =1+Q(p)r, (83)
where Pa(p), Q2(p) and Ps(p), are trigonometric polynomials of the form

P3(ip) = az cos3p + ar cos g + az sin g,
Q2(p) = —azsin 3¢ + by cosp + by sin g,
P3(p) = co+ ¢1 cos2p + ¢ 8in 2.

THEOREM 14.1. For all integrable cases of system (83) there is a local
analitycal change of coordinates in a neighbourhood of the origin such that,
after an analytic reparametrization of time, the cubic system with degener-
ate infinity has one of the following expressions in polar coordinates:

(i)7 = (R3sin 3¢ + Ry sin p)r? + Ry sin 2¢r3, ¢ = 1 + R3 cos 3pr;

(ii)7 = (R3 cos 3¢ + Ry cos(p + ¢1))r?, ¢ = 1 — (R3 sin3p + 3Ry sin(¢ +
©1))7;

(iii)7 = R3(cos3p£3 cos(o+¢1))r?, ¢ = 1+ R3(— sin 3p+sin(p+¢1))r;

(iv)7 = (R3 cos3p+ Ry cos(o+¢1))r?, ¢ = 1+ (—R3sin 3¢ + Ry sin(p+
©1))r-.

The following theorem, which characterizes isochronous centers of cubic
systems with degenerate infinity, is due Chavarriga, Garcia and Giné [18].

THEOREM 14.2. A mnecessary and sufficient condition for the origin of
system (82) to be an isochronous center is that the system can be brought to
one of the following systems (CDIy), (CDIs), (CDI3), (CDIy), (S3), (see
Theorem 26), by a linear change of coordinates and a rescaling of time.
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TABLE 25.
Isocronous cubic systems with degenerate infinity (T).

7=r? [cos?)gof %COS(pf]ﬁSiIup] +r [f

|4

System CDIy

Carteqian coordinates:
i=—y— 2 - 2kizy — L(4k12” + 3kizy),
g=x+kaz? - 2 — kiy® — L(4kia” + 3kixy).

Polar coordinates:

2k

2
2kq kY o
3 7TC0S2@77SIH2@ 5

¢=1+r(—sin3p + k1 cosp —sin p).

Strong first integral

H — (243ki2%)°4 3y 4043k, 2y)?
(14k12)3(3+3k12—16y)

Reciprocal integrating factor:

= (1 + k12)(3 + 3k1z — 16y)(9 + 18k1x — 24y + (32 + 9k})x? — 24k zy).

The change of coordinates

X = ‘37'+‘3k17‘ n= 3y74m2+3k1.7:y
V(+k12)3(=3—3k 2 +16y) V(+k12)3(—3—3k12+16y)
transforms the system in X = —(1 + k1z)Y, Y = (1 + k1z) X, where

_ 3X(3k1 X —8Y+4/—27464X2464Y2)

- —27464X2 — 9k2X2+48k1 XY

Finally, setting x = Rcos ®, n = Rsin ®, we have

1 p2— (k3 cos ®—sin ®)>
1+kiz (krg cos P—sin @+p)(sinP+p)?

—-p
the previous expression from 0 to 2w we obtain

27 8k
where R = oy and k1 = =3*. Integrating

2 . ™
fo ]f% = [® — ksln(sin :tp)]?) = 2.
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TABLE 26.

Isocronous cubic systems with degenerate infinity (II).

System CDI-

Cartesian coordinates:

= —y+ ]631‘2 — 2kyzy — 4‘7’?2 + %(16372 — 3kyzy — 4y7),
y=z+ ki’ + MT” — ki + ké—”(16$2 — 3kizy — 4y°).

Polar coordinates:
2
7P =r? [cos3<p+ ?coscp — k1 sin<p] + 78 [2k1 + %cos&p — %sin&p ,

¢ =1+r(—sin3p + ki cosp+ 5 sinp).

Strong first integral:

H = Brt3k 22)2 4+ (3y+3k 2y +4y2)>
- (34+3k12+8y)% :

Reciprocal integrating factor:
V=1 +kiz)(3+ 3kiz + 8y)(9 + 18k1z + 96y + (97 — 256)z> + 96k zy + 128y7).

The change of coordinates

_ 3z2+43k12> _ 3y+3kixy+4y?
X = (834+3k12+8y)2° 1 T (34+3k12+8y)2

transforms the system in X = —(1+ k1z)Y, Y = (1 + kiz)X,
where z = 55

Finally, setting x = Rcos ®, = Rsin ®, we have

3k1Rcos®

=1+ Gasme 1

_1
1+kqiz
Integrating the previous expression from 0 to 27 we obtain

2 4 3k1In(16Rsin®—1)727
fo T¥kiz [¢+#]0 = 2m.
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TABLE 27.

TIsocronous cubic systems with degenerate infinity (TIT).

System CDI3

Cartesian coordinates:
& =—y+z2 -y’ +z(ci1z® + 2camy — c19?),
)=+ 2zy +y(c12® + 2camy — c1y?).

Polar coordinates:
7 =12 cos @ + 1°(c1 cos 2 + c2 sin 2¢),
@ =1+rsinp.

Strong first integral:

H = zty”
142y —coz?+2cizy+cay?

Reciprocal integrating factor:
V= (22 4+ 931 + 2y — cox® + 2c12y + c29?).

The change of coordinates

_ x — Y
V1+2y—con2+2c1myteay? " V1+2y—cor2+2c1my+eay?

X

transforms the system into x = —(1 +y)n, 7 = (1 +y)x,

n(nty/1+eax2—2c1 xn+n2—can?)
1+cox2—2c1xn—can? ’

where y =

Finally, setting x = Rcos ®, n = Rsin ®, we have

1 -1+ R sin &
1+y \/1+c2R2 cos? @—cq R2 sin 2&4(1—c2)R2 sin2 &

Making ® = ¢ — ¢1, c2 = % + kcos2¢1 and ¢1 = ksin2¢;
the previous expression takes the form

1 14+ Rsin(¢—d1) -1+ R cos ¢q sin¢ + R sin ¢ cos ¢
1+y 2 - 2 2 °
’ \/1+RT+I<-R2 cos 2¢ \/1+RT+kR2 cos 2¢ \/1+RT+I«R2 cos 2¢
. . . . 27 dd .
Integrating the previous expression from 0 to 27, that is, fo ity WE obtain

= 2.

“+27
cos ¢1ln[2kR cos ¢+\/2k+kR2+2k2R2 cos 2¢] + sin ¢q arctan 2vER sin ¢ :|i|¢1

+
¢ V2k V2k |:\/2+R2+2kR2 cos26 1] 4,
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TABLE 28.
Isocronous cubic systems with degenerate infinity (IV).

System CDI,

Cartesian coordinates:
&= —y+ a1z’ +axry — a1y’ + z(2comy + ala,gyZ),
9=z + 2a12y + a2y’ + y(2cozy + ara2y?).

Polar coordinates:
7 =1%(a1 cos @ + assin p) + 2 [% — 12 c08 2 + 2 sin2<p],
@ =14 raisinp.

Strong first integral:

[27(0,271 /8c274a,$+a§)m+2(1,1yj| “
)

22442
2— (a,2+\/8(:2 74(1?—}—(1,3).7:—&—2(1,1 y

H =
(1—asz+2a1y+(af—2c9)z?—aragzy+aly?)

a

: 2 2
v —4a? + a2 > , = .
if 8¢o —4ai + a3 > 0 and « Sea—daZral

2—agz42ayy ] '|

2a9 arctan
22 4y2 1/4a%7a%78c2:c
(1—aso+2a;y+(a2—2ca)22—ajaszy+aZy?) P [ V4aZ—a2—8cy

Reciprocal integrating factor:
V= (22 + 9y (1 — asx + 201y + (a3 — 2¢2)2? — araszy + aly?).

Transversal commuting system
&=z — axx® + 2a1zy — m(2(:2m2 + aiazzy),
Y=y — a1z’ — asxy + ary® — y(2(:2m2 + ara27y).
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TABLE 29.
Kukles isochronous systems.

System SK
Cartesian coordinates:

Tziya
9=z + 3y + 2>

Polar coordinates:
3
T

= 2(cos ¢ — cos 3p)r” + Z-(sin 4p + 2sin 2¢p),
¢ =1+ 2 (siny+sin3¢p) + %(cos4<p—|—4c052cp+3).

Strong first integral:

_ 2%+ +y)°
H ="y

Reciprocal integrating factor:
V= (2" +y+1)((2> +y)” +2?).

Linearization:

2
_ T _ Tty
X = 1542 1= 142

Transversal commuting system:
#=z(l+y+27),
y=y—z"+y -z

15. KUKLES SYSTEM

Let us consider Kukles’ system

L=y A A A (84)
] -2+ a12% + aszy + azy® + asx® + as2y + agzy? + ary®.

The following theorem is due to Christopher and Devlin [28]. See also
Rousseau and Toni [83], for the case az = 0. Volokitin and Ivanov [106]
studied the reducibility of higher degree systems to Kukles’ system.

THEOREM 15.1.  The origin is an isochronous center of system (84) if
and only if the system can be brought into system (SK) (see next table)
through a change of coordinates and a rescaling of time.
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