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ABSTRACT 15 

Canopy height is an excellent indicator of forest productivity, biodiversity and other 16 

ecosystem functions. Yet, we know little about how elevation drives canopy height in 17 

mountain areas. Here we take advantage of an ambitious airborne LiDAR flight plan to 18 

assess the relationship between elevation and maximum forest canopy height, and discuss 19 

its implications for the monitoring of mountain forests’ responses to climate change. We 20 

characterized vegetation structure using Airborne Laser Scanning (ALS) data provided 21 

by the Spanish Geographic Institute. For each ALS return within forested areas, we 22 

calculated the maximum canopy height in a 20 x 20 m grid, and then added information 23 

on potential drivers of maximum canopy height, including ground elevation, terrain slope 24 

and aspect, soil characteristics, and continentality. We observed a strong, negative, piece-25 

wise response of maximum canopy height to increasing elevation, with a well-defined 26 

breakpoint (at 1623 ± 5 m) that sets the beginning of the relationship between both 27 

variables. Above this point, the maximum canopy height decreased at a rate of 1.7 m per 28 

each 100 m gain in elevation. Elevation alone explained 63% of the variance in maximum 29 

canopy height, much more than any other tested variable. We observed species- and 30 

aspect-specific effects of elevation on maximum canopy height that match previous local 31 

studies, suggesting common patterns across mountain ranges. Our study is the first 32 

regional analysis of the relationship between elevation and maximum canopy height at 33 

such spatial resolution. The tree-height decline breakpoint holds an intrinsic potential to 34 

monitor mountain forests, and can thus serve as a robust indicator to appraise the effects 35 

of climate change, and address fundamental questions about how tree development varies 36 

along elevation gradients at regional or global scales. 37 
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INTRODUCTION 41 

Elevation is a strong handicap for the development of tree vegetation in mountain areas. 42 

This phenomenon is particularly evident at the treeline, i.e. the altitudinal limit of upright 43 

tree growth (Kullman, 2002; Körner, 2012). The treeline has received much attention in 44 

recent decades due to the interest in studying vegetation at the limit of its physiologica l 45 

capacity, and because its relation to temperature makes it an ideal early indicator of the 46 

responses of vegetation to climate change (Holtmeier & Broll, 2020). The limitation to 47 

tree development at the treeline responds to a common biological cause that applies across 48 

latitudes (Körner & Paulsen, 2004; Körner, 2012), and is related to the temperature and 49 

length of the growing season. Accordingly, Paulsen & Körner (2014) determined the 50 

position of the potential treeline – the natural climatic limit of tree growth without human 51 

influence – across the globe. In many mountain systems, however, this potential treeline 52 

does not overlap the actual one due to the long history of anthropic modifications (Harsch 53 

et al., 2009; Ameztegui et al., 2016). 54 

We know much less about how elevation limits tree growth below the treeline. Does 55 

elevation pose a gradual limitation to the development in height of tree vegetation? Does 56 

it occur abruptly? In the latter case, from which elevation does it become a limit to the 57 

development of trees? These are questions that remain without a clear answer, despite the 58 

importance of canopy height as an indicator of forest biomass and carbon storage 59 

(Thomas et al., 2008), productivity (Socha et al., 2020), biodiversity and other ecosystem 60 

functions (Price et al., 2011; Tao et al., 2016). 61 

Reasons behind this gap in knowledge include the difficulty of measuring tree or canopy 62 

height in the field, especially in remote places with complex reliefs (Wang et al., 2019; 63 

Holtmeier & Broll, 2020). Traditional studies have addressed this issue through transects 64 

or field plots spread over relatively small areas (Payette et al., 1989; Camarero & 65 



Gutiérrez, 2004; Batllori & Gutiérrez, 2008). In recent years remote sensing data has 66 

opened the possibility to study forest ecosystems at much larger spatial extents (Coops, 67 

2015; Gómez et al., 2019; Blanco et al., 2020). In particular, light detection and ranging 68 

(LiDAR) sensors can provide direct measurements of forest vertical structure over vast 69 

areas (Wulder et al., 2012; Wang et al., 2016), and have been employed to map forest 70 

canopy height, canopy cover or aboveground biomass (Lefsky et al., 2005; Simard et al., 71 

2011; Wang et al., 2016). To date, such maps have been based on large footprint, 72 

spaceborne full waveform LiDAR sensors, which offer global – yet incomplete – 73 

coverage at the expense of coarse spatial resolution (Wulder et al., 2012). In this sense, 74 

steep slopes are known to broaden the waveform of large footprint LiDAR sensors, 75 

making canopy height estimation very problematic (and often unreliable) over 76 

mountainous regions (Duncanson et al., 2010; Wulder et al., 2012). In response, 77 

initiatives to map global canopy height have deliberately excluded many mounta in 78 

regions (Wang et al., 2016). Conversely, ‘local’ approaches have opted for adhoc 79 

Airborne Laser Scanning (ALS), which offers finer resolution (Wulder et al., 2012; Mao 80 

et al., 2019). ALS-based estimations achieve similar or even greater accuracy than field 81 

measurements (Duncanson et al., 2010; Wang et al., 2019), though they are more difficult 82 

to scale up towards regional or global analyses.  83 

In this study, we aim to quantify the relationship between elevation and maximum canopy 84 

height for an entire mountain range (the Pyrenees), taking advantage of an ambitious ALS 85 

flight mission that covers the entire Spanish territory (PNOA). We specifically want to 86 

answer the following questions: (a) is there a critical elevation threshold from which the 87 

relationship begins to occur? (b) are the threshold and the strength of the relationship 88 

species-specific? c) is this relationship mediated by other physiographic variables such 89 

as aspect? This is the first study to approach these issues at such a broad geographica l 90 



extent. This will allow us to identify whether the relationships and patterns observed are 91 

regionally consistent or dependent on local factors, and discuss the implications for the 92 

functioning and service provision of mountain forests, and its potential use to monitor the 93 

responses of mountain forests to climate change. 94 

 95 

MATERIALS AND METHODS 96 

Study area 97 

Our study area was the Spanish Pyrenees, a range of mountains in southwest Europe that 98 

arranges from west to east in the border between France and Spain and covers 50,000 99 

km2, reaching more than 3,000 m at their highest summits (Fig. 1). The high altitud ina l 100 

gradient as well as the influence of the Atlantic Ocean in the West and the Mediterranean 101 

Sea in the East strongly regulate the climate and therefore the type of vegetation (Fig. 1; 102 

Table S1.1). In the west, beech (Fagus sylvatica L.) becomes dominant at montane 103 

elevations (> 1000 m). In the Central and Eastern part, the climate becomes continenta l, 104 

and the foothills are mostly dominated by evergreen or marcescent oaks, while pines 105 

become predominant at higher elevations, and Atlantic species such as beech or fir (Abies 106 

alba Mill.) are restricted to the most humid valleys. Pines distribute in a clear elevatio n 107 

gradient according to their autoecology: Scots pine (Pinus sylvestris L.) is the most 108 

common species in the montane range (1300 to 1700 m). From here the main species is 109 

the Mountain pine (Pinus uncinata Ram. ex DC), which reaches up to 2200-2300 meters, 110 

and constitutes the upper limit of the forest (treeline) throughout the massif (Fig. 1c). It 111 

should be noted that in the Pyrenees, the treeline is generally well below its potential 112 

limit, which some authors place around 2400-2500 meters (Ninot et al., 2008). This is 113 

due to the intense history of exploitation and pressure by man, who for millennia has 114 



cleared and burned the alpine forests to favor pasture for livestock (Ameztegui et al., 115 

2016). 116 

ALS data source 117 

We characterized vegetation structure using Airborne Laser Scanning (ALS) data 118 

provided by the Spanish Geographic Institute (IGN) via the National Plan for Aerial 119 

Orthophotography (PNOA). The datasets were captured between 2008 and 2011 (first 120 

PNOA flight) using a small-footprint discrete-return airborne sensor (Eastern Pyrenees 121 

Leica ALS50 and Central and Western Pyrenees Leica ALS60), operating at near infrared 122 

wavelength (1.064 μm) and ±28º scan angle from the nadir. The nominal point density in 123 

the study area is 0.5 point/m2, with a vertical accuracy of ±0.2 m and a horizontal accuracy 124 

of ≤0.3 m. Data were delivered in 2 × 2 km tiles of preprocessed data points, in LAS 125 

binary file format (v. 1.2), with up to four returns recorded per pulse, and classified 126 

following the standards of the American Society for Photogrammetry and Remote 127 

Sensing (ASPRS). We selected, downloaded and processed the 3,140 tiles that intersected 128 

the limits of the Pyrenees according to the Global Observatory of the Pyrenees (OPCC). 129 

Processing of ALS data, maximum canopy height and environmental variables 130 

After filtering for those points classified as ground or vegetation (ASPRS classes 2, 3, 4 131 

and 5), we normalized the point cloud by subtracting the elevation of a 5x5 meter digita l 132 

terrain model (produced from the same ALS data) using the function lasnormalize as 133 

implemented in the lidR R package (Roussel et al., 2020). Point cloud data were then 134 

aggregated to a 20-m grid cell using the grid_metrics function in lidR. To reduce the 135 

influence of sampling bias from possible errors in ALS surveys, and since we were 136 

interested in the maximum canopy height in each point of the territory, we retrieved for 137 

each cell in the grid the median of vegetation height returns above the 95th percentile in 138 



height (top_height), following Mao et al. (2019). We used the Spanish Forest Map 139 

1:50,000 to restrict the analyses only to forested sites, and to assign each cell in the grid 140 

to a particular dominant forest species. Direct comparison of the ALS-derived height 141 

values with ground truth values derived from the Spanish National Forest Inventory (IFN; 142 

Direccion General para la Biodiversidad, 2007) is not possible due to methodologica l 143 

differences between both data sources. Instead, we compared the overall height 144 

distribution between the two data sources for each main tree species in the study area 145 

(Fig. S1.1). This allowed us to verify that our filters correctly excluded errors in the ALS 146 

surveys and assigned ALS data to the main species, producing reasonable top_height 147 

values for each of the species (Mao et al., 2019). 148 

We then added information on potential drivers of maximum canopy height – includ ing 149 

physiographic, climatic and soil-related variables – to each cell in the grid. Ground 150 

elevation, terrain slope angle and aspect were obtained from the ALS-derived 5 m DTM. 151 

Aspect values were then reclassified into north (values between 315 and 45º) and south 152 

(between 135 and 225º); we also derived quantitative indicators of northness and eastness 153 

as the cosinus and the sinus of terrain aspect, respectively. We calculated the distance to 154 

the sea as a proxy for climatic continentality. Soil characteristics were obtained from the 155 

SoilGrids database (Hengl et al., 2017), and included depth to bedrock and soil texture 156 

(proportion of clay, silt and sand). Finally, we derived climatic variables – mean annual 157 

temperature and annual precipitation – from the WorldClim database (Fick & Hijmans, 158 

2017). All variables were resampled to the 20 x 20 m working resolution (see Fig. S1.2 159 

to S1.13). 160 

Statistical analyses 161 

Since we were interested in modeling the response of the potential maximum 162 

development of tree vegetation, we aimed to remove from the dataset those cells in which, 163 



for many possible reasons, the tree vegetation has not reached its full potential height 164 

(poor soil, early stages, management and other disturbances, etc.). To do so, we grouped 165 

all the observations located above 1200 m into 500 equal interval elevation classes and 166 

selected, for each elevation class (2.6 m width each), only those cells with top_height 167 

values above the 95th percentile for that class (Coll et al., 2011). The resulting variable 168 

was further referred to as the maximum canopy height (max_height). It represents the 169 

maximum height that vegetation can reach for a given elevation interval, and was termed 170 

as the dependent variable in our models. Since the choice of filtering percentile is 171 

somewhat arbitrary, and to assess the influence of this choice on our conclusions, we also 172 

built models in which the maximum canopy height was determined by selecting 173 

observations above the 90th percentile for each elevation class, and the results are shown 174 

in Supplementary Materials.  175 

After visual exploration of the data, we assessed the relationship between elevation and 176 

max_height by fitting log-linear segmented regression models, an analysis in which the 177 

independent variable is partitioned into intervals and a separate regression is fitted into 178 

each interval. A segmented (or broken-line) relationship is defined by the slope beta 179 

coefficients (β1 and β2) and the breakpoints (ψ) where the slope of the relation changes 180 

(Equation 1).  181 

log(max _ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) = �𝛼𝛼1 +  𝛽𝛽1 ∙ 𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸 ∀ 𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸 ≤  𝜓𝜓𝛼𝛼2 +  𝛽𝛽2 ∙ 𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸 ∀ 𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸𝑡𝑡𝑒𝑒𝐸𝐸𝐸𝐸>  𝜓𝜓 (𝐸𝐸𝐸𝐸. 1) 182 

where α1 and α2 are the intercepts, and β1 and β2 are the slopes of the relationship below 183 

and above the breakpoint, respectively, whereas 𝜓𝜓 is the breakpoint, i.e. the value of the 184 

independent variable where the slope of the relationship changes. 185 

The model simultaneously yields point estimates and standard errors of all the model 186 

parameters, including the breakpoints. This allowed us to obtain not only the slope of the 187 



relationship between both variables (β2), but also to determine the threshold at which this 188 

relationship commences (ψ, i.e. the breakpoint). We obtained the model parameters (β1, 189 

β2, and ψ) by bootstrapping, to avoid the effects of the huge sample size on the 190 

significance of the parameter estimators (White et al., 2014), and to avoid the potential 191 

misspecification of the model due to spatial autocorrelation. Thus, we fitted 1000 models 192 

with a subsample of ≈10,000 randomly chosen data points (5,000 for calibration and 193 

5,000 for validation) for each realization. We retrieved the mean and the standard 194 

deviation of the breakpoint position (ψ) and the slope before and after the breakpoint (β1 195 

and β2) as parameter estimates, and the R-squared (R2) and root mean standard error 196 

(RMSE) – calculated using the validation sample – as indicators of model performance. 197 

We assessed the support for the segmented regression model by comparing its 198 

performance to that of a non-segmented log-linear model via the differences in Akaike’s 199 

Information Criterion (AIC) and R2. 200 

We also evaluated if additional variables could further explain the variation of maximum 201 

canopy height. To do so, we only kept observations above the elevation breakpoint as 202 

determined by the segmented model. Then we fitted univariate lineal models including as 203 

predictors elevation, soil characteristics – soil depth and texture –, climatic variables – 204 

mean annual temperature and annual rainfall – and physiographic variables 205 

(continentality, northness, eastness, and terrain slope). We also fitted a ‘full model’ that 206 

considered all the predictors. We investigated the change in model performance (R2) of 207 

each univariate model, focusing on the comparison with the ‘full model’ and the 208 

univariate elevation model.  209 

To assess the effect of aspect on the relationship between elevation and max_height, we 210 

repeated the analysis after segregating the sample into aspect classes. That is, we 211 

determined max_height per elevation class separately for north-facing and south-facing 212 



slopes, and then we fitted a segmented regression – as specified above – for each aspect 213 

class. We repeated the same procedure for each main tree species, splitting the sample 214 

according to the four main species in our dataset: Pinus sylvestris (49.6% of the laser 215 

returns above 1200 m), Pinus uncinata (27.5%), Fagus sylvatica (8.0 %), and Abies alba 216 

(3.9%). We did not include Quercus species in this analysis because – although abundant 217 

in the original sample – they were only present at low elevations (below 1500 m; Fig. 1). 218 

All the statistical analyses were conducted using R version 3.6.1 (R Core Team, 2018) 219 

and the package segmented (Muggeo, 2020), and the variables were log-transformed 220 

when needed to meet the assumption of normality. 221 

RESULTS 222 

Response of maximum canopy height to elevation 223 

Estimations of tree canopy height varied between 11 and ca. 35 m (Table S1.1), and in 224 

general were higher at both ends of the Pyrenees, where the oceanic influence allows the 225 

presence of species from temperate forests such as beech or fir (Fig.2). There was a clear 226 

breakpoint in the response of maximum canopy height to elevation, which occurred at an 227 

elevation of 1623.3 ± 4.7 m (Fig. 3). Above this threshold, maximum canopy height 228 

decreased at a rate of 1.7 meters per each 100 m gain in elevation, whereas below this 229 

point, maximum canopy height was independent to elevation (Figure 3; Table 1). The 230 

results obtained across 1,000 bootstrap models were very consistent and showed a high 231 

robustness in the estimation of all the regression parameters (Fig. S1.14, see Methods for 232 

details on bootstrapping). The existence of the breakpoint is confirmed by the better fit of 233 

the stepwise model with respect to alternative linear and non-linear models (Table 1). 234 

Elevation explained around 65% of the variability in maximum canopy height (Table 2). 235 

Climatic variables, particularly mean annual temperature, were also good predictors of 236 



maximum canopy height, but with less predictive ability than elevation (R2 = 0.36 and 237 

RMSE = 2.9 m for temperature; 0.18 and 3.3 for annual precipitation). The effect of the 238 

other potential predictors was negligible, with the exception of soil depth (R2 = 0.14; 239 

RMSE = 3.4; see the relationship of maximum canopy height with all explanatory 240 

variables in Fig. S1.15 – S1.18). However, when combining elevation with climatic 241 

variables or soil depth into a single model, the predictive ability remained similar to that 242 

of the univariate elevation model (Fig. 4). This suggests that the explanatory effect of 243 

climatic and soil-related variables is mainly due to their covariation with elevatio n 244 

(Pearson's r for mean annual temperature = -0.89, for precipitation = 0.74, for soil depth 245 

= -0.70). 246 

The results using percentile 90 were very similar to those obtained for percentile 95. There 247 

was also a strong support for the existence of a breakpoint, which the models located at 248 

1648 ± 6.4 m in elevation, i.e. only 25 m above the breakpoint detected for p95 (Fig. 249 

S1.19). Above this threshold, maximum canopy height decreased at a rate of 1.7 meters 250 

per each 100 m gain in elevation, identical to the rate detected for percentile 95. The 251 

goodness of fit of the percentile 90 models was in turn slightly poorer, with a mean R2 = 252 

0.47. 253 

Aspect and species-specific effects of elevation on maximum canopy height 254 

The drop in maximum canopy height with elevation was much more pronounced (-2.4 255 

m/100 m vs. -1.3 m/100 m) for the northern slopes, where it also started at a slightly lower 256 

elevation (1657 vs. 1674 m; Fig. 5), although without significant differences in the 257 

breakpoint position (Table 1). The maximum height of the vegetation below the 258 

breakpoint was up to four meters taller on the northern aspects (27 vs. 23 m), but due to 259 

the faster decline in maximum height, trees become taller in southern orientations from 260 

elevation 2100 onwards (Fig. 5). Models adjusted for north-facing aspect trees showed a 261 



better fit than those for south slopes (R2 = 0.66 ± 0.008 vs. 0.40 ± 0.011), as well as 262 

more robust parameter estimation (Fig. S1.20-S1.22). 263 

Fitting separate models for each species revealed an unequivocal breakpoint only for the 264 

two species growing in the subalpine belt: Pinus uncinata and Abies alba. For these two 265 

species, the model captured 60 and 87% of the variation in maximum canopy height, 266 

respectively, 20 points more than alternative linear models (Table 1). The relationship 267 

profile was quite similar to the one observed in the general analysis, with a slight decrease 268 

in height until a certain elevation threshold, above which the effect of elevation was much 269 

sharper, and twice as strong in Abies than in Pinus (Fig. 6).  270 

In the two other species (Pinus sylvestris and Fagus sylvatica) the goodness of fit of the 271 

models indicates a much poorer ability to predict maximum canopy height with elevatio n 272 

(R2 = 0.17 and 0.24), and stepwise models showed similar explanatory ability than log-273 

linear models (Table 1). The breakpoint for these two species was detected at elevatio ns 274 

at which their presence becomes testimonial (Fig. 1 and Fig 6). For Pinus sylvestris, the 275 

rate of decrease in maximum height before the threshold was the highest of all species, 276 

and the breakpoint did not occur until 1915 meters, which is close to the upper elevatio n 277 

limit of the species in the Pyrenees. Moreover, the log-linear model explained a simila r 278 

amount of the variation in canopy height, which indicates low support for the existence 279 

of a breakpoint in the “maximum height-elevation” relation. In the case of Fagus 280 

sylvatica, parameter estimations show a bimodal distribution that indicates little support 281 

for the piecewise response (Fig. S1.23 – S1.25). 282 



DISCUSSION 283 

Maximum canopy height decreases with elevation only above a threshold 284 

We observed a clear, negative, and piecewise response of maximum canopy height to 285 

increasing elevation. The piecewise and negative response was observed regardless of 286 

other factors such as slope, orientation or the dominant tree species. Interestingly, the 287 

relation between maximum canopy height and elevation is not gradual, but starts at a 288 

certain point, evidencing that elevation begins to restrain the height of trees further below 289 

the treeline, but above the trailing edge of species’ range. Furthermore, the models fitted 290 

with tree heights above the 90th percentile yielded the same patterns as those above the 291 

95th percentile, demonstrating that the relationship between canopy height and elevatio n 292 

holds irrespective of the height indicator chosen. 293 

It is clear that ecological processes in mountains are not driven by elevation itself, but by 294 

the various factors that are correlated with it (e.g. temperature or rainfall) (Rumpf et al., 295 

2018; Körner & Spehn, 2019). Previous studies conducted on tropical and temperate 296 

biomes present strong evidence on the prominent role of water availability in canopy 297 

height (Klein et al., 2015; Tao et al., 2016; Zhang et al., 2016), supporting the hydraulic 298 

limitation hypothesis that has also been verified at the individual tree level (Koch et al., 299 

2004; Moles et al., 2009). In contrast, energy limitation was more important in boreal 300 

forests, where temperature is more limiting to trees (Zhang et al., 2016). In our case, the 301 

decrease in maximum canopy height with elevation seems to be primary related to the 302 

adiabatic gradient, i.e. the decrease in temperature with elevation, rather than to changes 303 

in soil properties or water availability. These results suggest that energy limitation is also 304 

the most decisive factor in mountain environments, but the generality of this finding has 305 

yet to be confirmed in other mountain ranges. Notwithstanding, the observed humpshaped 306 

relationship seems to indicate that more than one variable may be involved, as already 307 



reported for boreal forests in Alberta (Mao et al., 2019). Elevation, in any case, seems to 308 

integrate very clearly the various causes that govern the maximum height that tree 309 

vegetation can reach. 310 

The height-elevation threshold as a tool to monitor climate change effects 311 

The existence of a clear elevation threshold above which canopy height begins to 312 

diminish unveils the potential of this threshold as a monitoring tool to assess the effects 313 

of climate change on mountain forests at regional or global scales. Despite the attention 314 

devoted to the treeline as an indicator of vegetation responses to climate (Paulsen & 315 

Körner, 2014), many treelines have been historically modified by human activity, 316 

hampering the detection of climatic responses (Harsch et al., 2009; Ameztegui et al., 317 

2016). In contrast, our threshold presents a series of advantages. By considering the 318 

maximum height of the vegetation along elevation gradients, the position of our limit is 319 

not sensitive to anthropic factors, and may thus be used as an alternative indicator to study 320 

the responses of species related to the changes in climate. Moreover, our indicator, based 321 

on tree growth, is likely to respond more readily to environmental changes, although this 322 

remains to be verified. In order for the treeline to move upwards, a series of processes 323 

must take place successively – seed production and dispersal, germination and 324 

establishment, survival, growth… – each depending on the climate in different ways. 325 

Many treelines are therefore very inert to change, and it is common to detect the effects 326 

of climate change as density changes below the treeline rather than as actual 327 

displacements of the limit itself (Camarero & Gutiérrez, 2004; Batllori & Gutiérrez, 328 

2008). Future research may elucidate to what extent the indicator we present here 329 

responds to environmental changes more or less rapidly and accurately. 330 

Several arguments support the use of elevation instead of climate variables as a 331 

monitoring tool. First, elevation seems to integrate well a variety of environmenta l 332 



variables – temperature, precipitation, soil properties – which often are correlated both 333 

among them and with elevation. Second, and more importantly, it is difficult to find 334 

climatic data with the required spatial detail, particularly in mountain areas. Although 335 

global datasets such as WorldClim (Fick & Hijmans, 2017) have made worldwide 336 

climatic data readily available, their quality is spatially unequal, and the density of climate 337 

stations commonly gets scarce precisely in mountain regions (Paulsen & Körner, 2014). 338 

For instance, only around 2% of the weather stations in Spain are located above 1,500 m 339 

(Gonzalez‐Hidalgo et al., 2020). This issue may not be so severe for global analyses, but 340 

becomes critical if mountain areas are to be targeted. Moreover, the rapid change of 341 

precipitation over short horizontal distances is often not well captured by climate 342 

databases, leading to potential biases in the estimation of its role as driver of ecologica l 343 

processes. Finally, most of these databases provide static information, which prevents 344 

their use to monitor the response of species to climate change. 345 

Vegetation height decreases faster at northern-slopes and for subalpine species 346 

Beyond 1600 meters, the maximum canopy height decreased at a rate of 1.7 meters for 347 

every 100 meters of increase in elevation, identical to the rate reported for a pine-348 

dominated treeline in the Swiss Alps (Coops et al., 2013). However, both the position of 349 

the breakpoint and the magnitude of the response were not general, but sensitive to factors 350 

such as species or slope orientation. The faster response of canopy height in northern 351 

aspects corresponds with their higher productivity at low elevations, and is also consistent 352 

with previous studies that locate the Pyrenean treeline at higher elevations on the southern 353 

slopes due to differences in thermal balance and dynamics in snow cover (Ninot et al., 354 

2008). Very similar patterns have also been observed in the Swiss Alps, where responses 355 

of vegetation height were also 70% faster on northern slopes, as observed here (Coops et 356 



al., 2013). The similarity in patterns in both massifs suggests a common response that 357 

deserves further study. 358 

Interestingly, the accuracy of the regression model was much higher for species typical 359 

of higher elevations (Pinus uncinata and Abies alba; Table 1). These species, which rarely 360 

grow below 1300-1500 m, mostly thrive in the Pyrenean subalpine belt, which is 361 

characterized by relatively wet but cold and windy climate. In such conditions, its growth 362 

potential in height is likely to be more limited by temperature changes associated to 363 

elevation than by soil- or precipitation-related variables (i.e. soil depth, water and nutrient 364 

availability), which can be more limiting at lower elevations. Accordingly, we only found 365 

a limited effect of soil characteristics on maximum canopy height, which can be explained 366 

by the covariation of the former with elevation. These results support previous studies at 367 

finer scales with seedlings of these species planted along elevation gradients (Ameztegui 368 

& Coll, 2013; Coll & Ameztegui, 2019). The relationship between elevation and 369 

maximum canopy height was much less clear for montane species, which suggests that 370 

the elevation constraint begins above the upper limit of these species, where only a few 371 

individuals can grow under favorable microclimatic conditions (only 3.5% of the 372 

observations for montane species were located above the breakpoint, as compared to 75% 373 

for Pinus uncinata, see Fig. 1). It remains to be determined whether climate change can 374 

alter this behaviour, favouring the upwards migration of these species and a greater 375 

dependence on elevation. 376 

CONCLUSIONS 377 

Our study is the first regional analysis of the relationship between elevation and 378 

maximum canopy height at detailed spatial resolution. By combining thousands of ALS 379 

observations, we were able to address fundamental questions about how tree development 380 

varies along elevation gradients, and evidence the existence of a solid piece-wise 381 



response. The breakpoint in the maximum canopy height – elevation relationship has the 382 

prospect of becoming a fundamental tool in the study of responses of mountain trees to 383 

environmental changes. Regular monitoring of its position, for example, can be used to 384 

assess the effects of climate change on mountain forests, isolating them from the effects 385 

– often misleading – of land use changes. The approach is also applicable in any mounta in 386 

range, and may allow to test the generality of our findings. Finally, recent global 387 

monitoring initiatives such as GEDI (Global Ecosystem Dynamics Investigation), 388 

specifically designed for the study of vegetation, provide the first comprehensive global 389 

LIDAR dataset (Dubayah et al., 2020; Valbuena et al., 2020), and open a promising future 390 

for evaluating the relationship between canopy height and environmental and 391 

physiographical variables at the global scale.  392 
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TABLES 542 

Table 1. Summary of the results for the fitted models of maximum canopy height as a function of elevation. 543 

 Breakpoint (m) β1 β2 R2 ΔR2 

  Mean  sd mean  sd mean  sd mean sd  mean  sd  
General model 1623.3 4.7 7.9·10-06 7.4·10-06 -7.8·10-4 6.5·10-06 0.63 0.004 0.18 0.003 

Per aspect classes           

North-facing 1657.1 9.1 4.2·10-5 1.4·10-5 -1.0·10-3 1.9·10-5 0.66 0.008 0.21 0.007 

South-facing 1674.0 92.9 -5.2·10-5 7.9·10-5 -6.4·10-4 7.5·10-5 0.40 0.011 0.07 0.005 
Per species           

Pinus uncinata 1782.9 9.1 -1.3·10-4 2.0·10-5 -7.8·10-4 1.2·10-5 0.59 0.008 0.14 0.006 

Abies alba 1722.3 20.5 -1.8·10-4 2.6·10-5 -1.4·10-3 9.9·10-5 0.87 0.012 0.25 0.023 

Pinus sylvetris 1915.2 32.4 -1.8·10-4 5.9·10-6 -1.2·10-3 1.9·10-4 0.17 0.007 0.01 0.002 

Fagus sylvatica 1696.9 135.35 -1.5·10-4 4.3·10-5 -1.1·10-3 5.8·10-4 0.24 0.033 0.04 0.015 
The parameter estimates correspond to a segmented log-linear model in the form: log(max_height) = α1+ 544 
ß1·Elevation for elevation < breakpoint; and log(max_height) = α2+ ß2·Elevation for elevation > breakpoint. The 545 
results are presented for the general model, for a model fitted for each species separately, and for a model fitted 546 
for each aspect class separately. Values are average predictions of parameters estimates for 1,000 models fitted to 547 
random subsets of the dataset (5,000 points for training and 5,000 for validation). R2 for each model is calculated 548 
as the coefficient of determination of the relationship between the observed data and the predicted data using the 549 
validation dataset. ΔR2 refers to the average increase in R2 of the segmented model as compared to a log-linear 550 
model. 551 

  552 



 

 

Table 2. Mean and sd of r-squared and RMSE of the 1000 tested models for each realization. 553 
Model name refers to the variable included as predictor of maximum canopy height, whereas 554 
Full Model refers to a multivariate model including all the possible predictors 555 

 Model Mean R2 SD R2  Mean RMSE SD RMSE 

Elevation 0.63 0.00613 2.25 0.0220 
Mean anual temperature 0.358 0.00873 2.94 0.0254 
Annual rainfall 0.182 0.00817 3.33 0.0256 
Soil depth 0.139 0.00718 3.41 0.0243 
Northness 0.030 0.00447 3.62 0.0247 
Distance to sea 0.027 0.00379 3.63 0.0258 
Sand % 0.023 0.00435 3.63 0.0268 
Clay % 0.016 0.00416 3.65 0.0260 
Silt % -1.2·10-4 0.00305 3.68 0.0246 
Slope -0.0012 0.00277 3.68 0.0257 
Eastness -7.7·10-3 0.00248 3.69 0.0248 

Full model 0.653 0.00570 2.17 0.0208 

R2 for each model is calculated as the coefficient of determination of the relationship between 556 
the observed and predicted data, using randomly chosen independent datasets for training 557 
(5,000 points) and validation (5,000). 558 
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FIGURE LEGENDS 570 

Figure 1. Location of the study area and distribution of the main species along 571 

elevation gradients (A) Distribution of the main forest species across the Spanish 572 

Pyrenees; (B) Location of the study area within Southern Europe; (C) Detail of the 573 

distribution of the main species along elevation gradients in a valley in the Central 574 

Pyrenees; (D) Violin plots showing the overall distribution of the main species across 575 

the elevation gradient in the Pyrenees, as observed using PNOA LiDAR data and the 576 

Spanish Forest Map.  577 

Figure 2. High-resolution (20 m) canopy height grid of the Spanish Pyrenees as 578 

derived from the Spanish Airborn LiDAR plan (PNOA). Canopy height was higher 579 

at both ends of the Pyrenees, where the sea influence softens the climate and allows the 580 

presence of tree species such as fir or beech. 581 

Figure 3. Relationship between terrain elevation and maximum canopy height 582 

across the Spanish Pyrenees, as determined from airborne LiDAR data. Orange 583 

lines represent the predictions according to a segmented log-linear regression model, 584 

and dashed line represents the breakpoint identified by the same model. Values indicate 585 

the approximate rate of change in maximum canopy height for a 100 m change in 586 

elevation below and above the breakpoint. The segmented log-linear model is the 587 

average prediction of 1,000 models fitted to random subsets of the original dataset. R2 588 

is calculated as the coefficient of determination of the relationship between the 589 

observed data and the predicted data using the validation dataset. 590 

Figure 4. Variation of maximum canopy height with elevation and climatic 591 

variables. Maximum canopy height increases with increasing temperature (A) and 592 

decreasing precipitation (B) but this relationship is explained by the covariatio n 593 

between elevation and climate variables (see Table 2). Elevation breakpoint is indicated 594 

by the dashed gray line. 595 

Figure 5. Relationship between terrain elevation and maximum canopy height in 596 

the Spanish Pyrenees, split for north-facing and south-facing slopes. Orange lines 597 

represent the predictions according to a segmented log-linear regression model, and 598 

dashed line represents the breakpoint identified by the same model. Values indicate the 599 



 

 

approximate rate of change in maximum canopy height for a 100 m change in elevatio n 600 

below and above the breakpoint. The segmented log-linear model is the average 601 

prediction of 1,000 models fitted to random subsets of the original dataset. R2 for each 602 

model is calculated as the coefficient of determination of the relationship between the 603 

observed data and the predicted data using the validation dataset. 604 

Figure 6. Relationship between terrain elevation and maximum canopy height in 605 

the Spanish Pyrenees, split across the main dominant species. Orange lines 606 

represent the predictions according to a segmented log-linear regression model, and 607 

dashed line represents the breakpoint identified by the same model. Values indicate the 608 

approximate rate of change in maximum canopy height for a 100 m change in elevatio n 609 

below and above the breakpoint. The segmented log-linear model is the average 610 

prediction of 1,000 models fitted to random subsets of the original dataset. R2 for each 611 

model is calculated as the coefficient of determination of the relationship between the 612 

observed data and the predicted data using the validation dataset. 613 
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