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Abstract 

AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) is an emerging 

electroanalytical technique designed to measure free metal ion concentration. The 

practical implementation of AGNES requires a critical selection of the deposition time, 

which can be drastically reduced if the contribution of the complexes is properly taken 

into account.  

The Resin Titration (RT) is a competition method based on the sorption of metal ions on 

a complexing resin. The competitor here considered is the resin Chelex 100 whose 

sorbing properties towards Pb(II) are well known. The RT is a consolidated technique 

especially suitable to perform an intercomparison with AGNES, due to its independent 

physicochemical nature.  

Two different ligands for Pb(II) complexation have been analyzed here: Nitrilotriacetic 

acid (NTA) and pyridinedicarboxylic acid (PDCA). The complex PbNTA is practically 

inert in the diffusion layer, so, for ordinary deposition potentials, its contribution is 
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almost negligible; however, at potentials more negative than -0.8 V vs. Ag/AgCl the 

complex dissociates on the electrodic surface giving rise to a second wave in techniques 

such as Normal Pulse Polarography. The complex Pb-PDCA is partially labile, so that 

its contribution can be estimated from an expression of the lability degree of the 

complex. These new strategies allow us to reduce the deposition time. The free Pb(II) 

concentrations obtained by AGNES and by RT are in full agreement for both systems 

here considered. The main advantage of the use of AGNES in these systems lies in the 

reduction of the time of the experiment, while RT can be applied to non-amalgamating 

elements and offers the possibility of simultaneous determinations.  

 

Keywords: Free lead(II) concentration; stripping analysis; lability degree; Chelex 100; 

speciation; Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) 

1. Introduction 

The knowledge of the free metal ion concentration in an aqueous solution is a key issue 

in a number of areas, ranging from the determination of stability constants to speciation 

studies for various purposes [1]. For instance, there is a general consensus in the 

environmental scientific community that the nutritional or toxic effects of many 

elements are typically dependent on the free ion concentration, as asserted by theories 

such a the Free Ion Activity Model (FIAM) [2] or the Biotic Ligand Model (BLM) [3]. 

Even if these theories were incomplete (and needed some corrections due to the 

dynamic contribution of complexes [4]), the information on the free metal ion 

concentration will still be needed as a key datum for the required speciation. 

 

The most typical instrument to measure free ion concentration is the Ion Selective 

Electrode (ISE) [5]. Some advantages of the ISE's are the simplicity of interpretation, 

Published in Analytica Chimica Acta 2007, vol 599, p 41-50 
DOI: 10.1016/j.aca.2007.07.055 reprints to galceran@quimica.udl.cat



 3  

their low cost, fast response, ease of use, etc. Among the drawbacks -focussing 

specifically on commercial devices- are the high limit of detection (unless buffered by a 

high total metal concentration [6]), the lack of availability of  ISE for some metals such 

as Zn [7], stability problems, etc.  

 

In this perspective, the proposal and testing of alternative techniques to complement 

existing ones deserves attention [8,9]. Validations of one technique against the others 

can be seen as one important step in their development, especially if the comparison 

between techniques permits to elucidate advantages and limitations of the analyzed 

techniques [10] and the comparison is also particularly important in cases where 

certified materials do not exist [4]. Here, we present an interlaboratory work to compare 

two techniques designed by our research teams: the Resin Titration (RT) technique [11] 

and AGNES [12] (Absence of Gradients and Nernstian Equilibrium Stripping).  The 

interest of such comparison is supported by the very different physicochemical nature of 

both techniques: RT being based on an ionic exchange resin while AGNES being a 

voltammetric technique. As systems, we have selected two ligands: NTA 

(Nitrilotriacetic acid) and PDCA (2,6-pyridinedicarboxylic acid) which form complexes 

with lead. These ligands have been selected to represent different complex behaviour in 

the pH range analyzed. For RT, based on the consideration of thermodynamic 

equilibria, NTA is weaker -in the resin complexation competition- than PDCA; while 

for AGNES, NTA is much more inert (a non-equilibrium characteristic) than PDCA, 

and -in principle- should require much longer deposition times. Moreover, PDCA 

exhibits some extra interesting characteristics: it is  present in nature as a component of 

fulvic acid and as a degradation product of vitamins, coenzymes and alkaloids and was 

suggested as a model compound of natural pedogenic fulvic acids [13]; only the fully 
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protonated form [14,15] and the complex PbPDCA adsorb onto the electrode [16,17]; 

PDCA+transition element ions could be helpful in understanding diabetes [18], etc. 

 

The layout of this paper is as follows. We summarize the principles and practical 

implementation of RT and AGNES in a theoretical section followed by an experimental 

section. In section 4 we analyze the strategies and results of each technique. In the 

conclusions we compile the main differences between both techniques.  

 

2. Theory 

2.1 The basis of the AGNES method 

AGNES principles have been described mainly in [12,19], but further details can be 

found in previous applied work such as the measurement of free Zn
2+
 in Mediterranean 

seawater [20], the study of the complexation of Cd
2+
 and Zn

2+
 to humic acids [21], the 

use of microelectrodes [22], etc. We summarize here the two conceptual steps or stages: 

deposition or first stage and stripping or second stage of AGNES.  

2.1.1 First stage 

The aim of the deposition stage is to reach –by the end of it– a situation of no 

concentration gradient (neither inside the mercury electrode nor in the solution in 

contact with the electrode), while keeping a fixed ratio of the electroactive couple 

concentrations due the Nernstian equilibrium (determined by the applied potential E1) 

( )0

*

M
1*

M

exp º '
c n F

Y E E
c RT

 = = − −  
   (1) 

where F is the Faraday, R the gas constant, T the temperature and Eº’ stands for the 

standard formal potential of the redox couple of the metal M, and 0

*

M
c  and *

Mc  refer to 
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the final homogeneous concentration value inside the mercury electrode and in the 

solution, respectively. We highlight that the attainment of this special condition of 

Nernstian equilibrium with no gradients in the concentration profiles of the metal 

species on both sides of the electrode surface along the deposition step (and before any 

stripping), is the key point of AGNES: so the deposition time and potential have to be 

judiciously selected. 

 

The preconcentration factor Y can be determined from Epeak, the potential peak of a 

Differential Pulse Polarography (DPP) experiment  [12], through: 

0

M DPP
1

M

exp
2

peak

D EnF
Y E E

D RT

 ∆  = − − −  
  

 (2) 

where MD  and 0M
D  are the diffusion coefficients for the free metal ion and the reduced 

metal (inside the amalgam) and DPPE∆  is a characteristic parameter of the DPP 

experiment. 

 

In the simplest implementation of AGNES only one potential step is applied along the 

deposition time t1, while stirring is on during a time t1-tw (i.e. tw is the resting time). In 

order to reduce the deposition time, another potential program has been proposed 

(which we call 2P or "2 pulses"): this consists in splitting the first stage into two 

different sub-stages (see Figure 1): a potential step corresponding to diffusion limited 

conditions, Y1,a, followed by a potential step at the desired concentration gain Y, also 

denoted Y1,b. This strategy has proven to reduce the deposition time needed to reach the 

target situation of the first step [19].  
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If the potential step corresponding to Y1,a is applied for too long time t1,a then an excess 

of metal might enter the mercury electrode (i.e. we have a higher metal concentration 

inside the amalgam than wished), and then we need a sufficiently long (t1,b) second 

potential step at the desired gain Y to avoid an overshooting of the final current (see 

Figure 2a). It has been demonstrated [19] that, when working with a practically constant 

concentration of free ligand, a ratio of t1,b=3×t1,a is enough to compensate for any 

possible overshooting and reach AGNES conditions. 

2.1.2 Second stage 

The aim of the second stage is the determination of the concentration of M
0
 reduced in 

the amalgam. For that purpose, a simple strategy consists in applying a sufficiently less 

negative potential (E2) producing a stripping current under diffusion limited conditions 

(see Fig 1). The measured response function of AGNES is the current at a certain time t2 

(see Fig 2b). 

 

As the faradaic current I is linearly related with 0

*

M
c  (due to the linear properties of the 

diffusion of M
0
 inside the electrode), and 0

*

M
c  is just Y *

M
c  according to eqn. (1), it 

follows that the free metal ion concentration is directly proportional to the faradaic 

current, with a proportionality factor h:  

*

MI h c=  (3) 

As the measured current, contains other components different than the faradaic one, 

there is a need of subtracting a blank from the total current. Under diffusion limited 

conditions no phenomenon in the solution (such as complexation, convection or 

adsorption) can affect the faradaic current.  
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2.2 The basis of the Resin Titration method 

In the resin titration (RT) technique, the resin is the titrant of the metal ion, and it is 

used in excess with respect to the metal ion. The procedure is based on the sorption of 

the metal ion on the resin at different values of V/w, i.e., the ratio of the volume of the 

solution phase (V, in mL) to the amount of resin (w, in g). The resin titration curve is 

obtained by plotting the concentration of the metal ion adsorbed on the resin (c, in nM) 

as a function of 1/w. Figures 3 and 4 are examples of these curves for the synthetic 

systems here considered. 

 

The concentration of sorbed metal ions depends on the species stability in solution 

phase and on the sorbing properties of the complexing resin. The stability of the species 

in solution is measured by the side reaction coefficient of the metal, αM(L), the ratio of 

total to free metal ion in solution [23]. The sorbing properties of the resins are measured 

by the partition coefficient K* [11,24], which is the ratio of the metal ion concentration 

in the resin phase to free metal ion concentration in solution. K* can be calculated at 

each particular set of experimental conditions as described in previous papers [11,24]. 

The concentration of metal ions sorbed at each point of the titration is modelled by the 

following relationship:  

wK

V

c
c

*

res

⋅
⋅

+
=

M(L)

tot,

1
α  (4) 

ctot,res is the total concentration of the metal ion that is sorbed on the resin when 

αM(L)V/K
*
w is negligible with respect to 1, i.e. at low V/w. 
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The reaction coefficient αM(L) can be evaluated only if it is in a well defined range of 

values, (“detection window”), which strongly depends on the nature of the resin and on 

the conditions. The range is defined by [11,25]: 

V

wK

V

wK. **  10 10
M(L) << α   (5) 

 

If the reaction coefficient αM(L) is lower than 0.1 K
*
 w/V, the metal is quantitatively 

sorbed by the resin (because M was either free or in complexes with very weak ligands 

completely dissociated by the resin). If αM(L) is higher than 10 K
*
 w/V , the metal ion is 

so strongly bound to the complexes that it is not sorbed on the resin. The presence of 

such strongly complexing species cannot be excluded in real samples and, for their 

determination, one must select a resin sufficiently strong. ctot,res and αM(L)/K
*
  can be 

evaluated by a non-linear regression procedure.  

 

3. Experimental 

3.1 Reagents 

All chemicals were analytical reagent grade. Solutions were prepared with ultrapure 

water (Milli-Q). Chelex 100 [CAS 68954-42-7] (Bio-Rad Laboratories), with a particle 

size of 100-200 mesh was delivered in the sodium form. It was washed and converted 

into the H
+
 form with ultrapure HNO3 as previously described [26]. 

 

The capacity of the resin (mmol of active groups per g of dry resin) was found to be 2.0 

mmol per g of dry resin Chelex 100 in H
+
 form, and the amount of water sorbed by the 

resin was determined as described elsewhere [26]. 
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For the RT experiments, a lead atomic spectroscopy standard solution (Fluka) of 1000 

mg L
-1
 [CAS 10099-74-8] and Pb(NO3)2 [CAS 10099-74-8] (Riedel De Haen) were 

used to have the proper Pb(II) concentration in the solution phase. For the AGNES 

experiments, lead standard solutions were prepared by adequate dilution from a 1000 

mg L
-1
 stock solution (Merck). 

 

The considered complexing agents were nitrilotriacetic acid, C6H9NO6 [CAS 139-13-9] 

(Fluka); pyridinedicarboxylic acid, C7H5NO4 [CAS 499-83-2](Merck-Schuchardt). 

Solutions were prepared from a proper dissolution of solids. 

 

3.2 Apparatus 

3.2.1 Apparatus for the AGNES Procedure 

Voltammetric measurements were carried out with an Eco Chemie Autolab PGSTAT30 

potentiostat attached to a Metrohm 663VA Stand and to a computer by means of the 

GPES (Eco Chemie) software package. The working electrode was a Metrohm 

multimode mercury drop electrode. The smallest drop in our stand was chosen for 

AGNES experiments, which according to the catalogue corresponds to a radius around 

r0 = 1.41×10
-4
 m. The auxiliary electrode was a glassy carbon electrode and the 

reference electrode was Ag/AgCl/3 mol L
-1
 KCl, encased in a 0.1 mol L

-1 
KNO3 jacket. 

 

A glass combined electrode (Orion 9103) was attached to an Ioncheck45 Radiometer 

analytical ion analyzer and introduced in the cell to control the pH. A glass jacketed cell 

thermostated at 25.0 °C was used in all measurements, which were performed under a 

purified nitrogen atmosphere. 
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To stir the solution, the PTFE tip stirrer of the Metrohm 663VA Stand was used at a 

rotation rate of 1500 rpm in all experiments.  

 

3.2.2 Apparatus for the Resin Titration Procedure 

A PHM 84 Research pH meter, Radiometer Copenhagen, with a combined Orion glass 

electrode was used for pH measures. The potentiometric cell was standardised in H
+
 

concentration as previously reported [27]. A small overpressure of nitrogen was applied 

in the vessel that was thermostated at 25 °C. 

An ICP (PerkinElmer SCIEX ELAN 6000 ICP-MS Instrument) was used to determine 

lead(II) concentrations in the stripping solutions. The detection limit (LOD) in the 

stripping solution (HNO3 1.0 M) was 0.1 nM.  

 

3.2.3 Procedure for the Resin Titration  

The titration is carried out following a batch procedure, with the same volume of sample 

solution and varying the amount of resin (w). The contact time is 24 h on a shaking 

plate. A long contact time is useful when complexes with unknown dissociation rate are 

present in the sample. If metal species do not dissociate within 24 hours, they are 

considered to be either kinetically inert or thermodynamically stronger than the active 

groups of the resin. After equilibration, the final pH is measured, the solution phase is 

separated by suction and the metal ion is eluted from the resin with 10 mL 1 M nitric 

acid, placed directly into the RT bottles.  The concentrations of Pb(II), are determined in 

each eluate by ICP-MS. 
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4. Results and discussion 

4.1 System Pb-NTA (nitrilotriacetic acid) 

4.1.1 AGNES determinations: developing the use of the second wave. 

Diamonds in figure 5 stand for the NPP wave of Pb
2+
 (no added ligand). If we add a 

large amount of nitrilotriacetic acid (NTA), we can see (squares) how this wave 

practically disappears in the region -0.3 to -0.8 V due to the dramatic reduction in 

concentration of free Pb(II) and the inert characteristics of PbNTA, but one can also see 

a new wave developing at a much more negative potential (around -0.8 V). This second 

wave is due to the direct reduction of the complex PbNTA, without previous 

dissociation in the solution. This effect had already been described by many authors 

[28-32] and sometimes called "lability dependence on potential".  

 

We aim now at using this "second" wave of PbNTA to reduce the deposition time. In 

the modality of AGNES with 2 pulses, we can apply a potential E1,a  sufficiently 

negative to take advantage of this second wave. Indeed, when diffusion limited 

conditions hold, not only for the free Pb
2+
 but also for the complex PbNTA, the supply 

to the electrode will be much larger, i.e. the direct reduction of PbNTA at the electrode 

surface will favour the mass transport of Pb
2+ 
from the solution to the drop. Afterwards, 

we apply the deposition potential E1,b necessary for the desired gain Y during a certain 

time t1,b to be sure that any missing Pbº is supplied or any exceeding Pbº is eliminated 

and we can attain AGNES conditions. 

 

Suitable values of t1,a depend on the desired Y. In principle, we prefer to fix the value of 

the current I2 that we want to obtain: this total current should be high enough so that the 
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value of the blank could have an almost negligible (or low) importance. With this I2-

value fixed, we will change the value of preconcentration factor or “gain” (Y) every 

time that the relationship of free and total concentration of Pb
2+
 varies. Indeed, equation 

(6) comes from equating the amount of metal arrived (either free or in the form of a 

complex with the same diffusion coefficient DM as that of the free metal, because NTA 

is a small ligand) during t1,a with the metal accumulated inside the drop at the desired Y 

*
2 3 *M TM
0 1,a 0 M

 4
(4 )  = ( )  

3

D c
r t r Y cπ π

δ
 (6) 

where δ stands for the diffusion layer thickness (in planar diffusion, i.e. when r0 >>δ). 

This equation leads to 

*

0 M
1,a *

M TM

 =   
3

r c
t Y

D c

δ 
 
 

 (7) 

which, given the usual parameters for our condition with HMDE, boils down to the 

approximate relationship: 

*

M
1,a *

TM

  
c

t Y
c

≈   (8) 

If we use a value of Y1,b=250 and the relationship between total and free concentrations 

of Pb(II) is taken approximately 10, then the theoretical value of t1,a is 25 s.  

 

Preliminary results (data not shown) with t1,b fixed to 200 s, Y1,b=250 and a relationship 

between total and free concentrations=10, indicated that, experimentally, around t1,a=11 

s was sufficient for AGNES conditions to be achieved. Then, with t1,a fixed in 11 s, we 

seek a refined t1,b (other than the initial 200 s), long enough to eliminate any possible 

excess of Pbº preconcentrated during the first substage. We see in figure 6 that the 
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measured current decreases with increasing t1,b (indicating that even t1,a=11 s produces  

a slight overshoot) and allowed us to accept t1,b=300 s as a correct (and safe) time for 

these conditions. We see in figure 6  that, using t1,b = 300 s, the I-values with the second 

wave strategy and the standard (i.e. without taking advantage of the second wave) 2P 

strategy are practically the same. On the other hand, following ref. [19], when we use 

the standard 2P and Y=250, the values of t1,a and t1,b are 175 s and 525 s, respectively. 

 

From these results, we can conclude that working with the system Pb-NTA, the 

deposition time of the experiments (11+300+50=361 s) can be reduced, for Y=250, to 

less than one half of the time needed with the standard 2 pulses strategy 

(175+525+50=750 s). 

 

We performed experiments in which Pb–NTA complexation was varied via a change in 

the value of pH. The total concentration of Pb(II) was 2×10-6 M and the concentration of 

NTA added was 5×10-6 M. 

 

For these experiments we applied the parameters previously optimized (t1,a=11 s, 

t1,b=300 s, Y1,a=10
20
, Y1,b=250), which were obtained at pH=5.07 and at a ratio between 

total and free concentration of Pb(II) of 10.  

 

To check the validity of the combination for pH other than 5.07, we have analyzed the 

currents along the first stage. Figure 7 shows these currents for three different values of 

pH. The difference in the observed behaviours, working with the second wave strategy, 

is due to the dramatic change in the relationship between total and free concentration of 

Pb(II).  
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- At pH= 4.09 (square markers in Figure 7), the relationship between total and free 

metal ion concentration is around 5. This relationship value is smaller than the 

optimized one (which was 10) and, therefore, t1,a is not enough to reach AGNES 

conditions during the first substage. In the second substage a slight “undershoot” can be 

appreciated, but the applied t1,b (300 s) is enough to eventually attain AGNES 

conditions (i.e. we see in Figure 7 that the residual current is reached by the end of the 

stirring time). 

 

- At pH=5.07, the pH-value previously optimized (see triangle markers in Figure 7), a 

small or negligible “overshoot” can be appreciated in the second substage. 

 

- At pH=6.01 (cross markers in Figure 7), the relationship between total and free Pb(II) 

concentration is around 100. Notice that in this case the “overshoot” is higher than in 

the previous ones, but, even in this case, the t1,b applied is enough to eliminate the 

excess of Pbº deposited during the first substage. 

 

4.1.2 RT determinations and comparison of AGNES and ISE techniques 

Independent synthetic solutions of KNO3 0.1 M all containing Pb(II) 2×10-6 M and 

NTA 5×10-6 M, but at different acidity, were analyzed by RT. In the range of pH here 

considered (from 3 to 6), the complexation between Pb(II) and NTA is weaker than that 

between the metal and the active groups of the resin. Thus, the useful points of the 

titration, to obtain a first estimation of αM(L), are those with the less quantities of Chelex 

100. In fact, only in these cases there is a competition between the resin and the ligand 

NTA in solution for the complexation of Pb(II). This observation is immediately evident 
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from the shape of the RT curves which show a small decay rate (see some examples in 

Fig. 3). 

 

The RT experimental conditions and the results obtained are reported in Table 1. In all 

the considered samples, the concentration of total lead(II) found by RT, ctot,res, is in 

good agreement with the total metal content (ctot). As previously demonstrated with 

certified samples [33], the choice of strong sorbents -like the iminodiacetic Chelex 100 

used here, able to compete with strong ligands for metal complexation- allows the 

determination of the total metal concentration directly from the RT and without the need 

of any other independent measurements. A good reproducibility of total metal 

concentration indicates that there is no loss or contamination of the metal during the RT 

procedure. 

 

Moreover, from the values of the reaction coefficient αM(L) experimentally obtained, we 

can calculate the concentration of the free metal ion in solution, as the total Pb(II) 

content in each system investigated is known.  

 

The results obtained are compared (see figure 8) with those found with AGNES (second 

wave and standard 2P) and ISE techniques and also with the theoretical calculations. 

We can see that for pH=2.99 (where the concentration of free Pb is high because the 

value of pH is acidic and most NTA
3-
 is protonated) we only performed the experiments 

with AGNES standard 2P technique because the contribution of the complex PbNTA is 

negligible and we cannot take advantage of the second wave.  
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To compare our experimental results with theoretical values, we have first to solve the 

problem about the choice of a suitable set of conditional constants among the huge 

literature data. We used the SC_Query database by IUPAC (SC-Query Vn 5.18) to 

collect the protonation and the complexation constants for the systems here considered. 

Given the variety of the reported stability constants, we averaged  (as done in [34] the 

values at the same ionic strength of our solutions (0.1 M) and in the temperature range 

between 20 and 25 °C. For NTA
3-
 we obtained: βH

1 =(5±2)µ10
9
 M

-1
, βH

2=(17±7)µ10
11
 

M
-2
 and βH

3=(11±5)µ10
13 
M

-3
 for the protonation equilibria and  βPb

1=(3±1)µ10
11
 M

-1 

for Pb
2+
 complexation. These average values were used to compute the free metal 

concentration, in the whole range of the pH of our systems, by SC_Query speciation 

code SolEq (SC-Query Vn 5.18) [35], see continuous lines in figure 8. The error bars 

(of each calculated value) are derived from the propagation of errors on the input values 

employed in the free metal ion concentration. 

 

We can see that the results of AGNES, ISE, and the theoretical data are practically the 

same and just a little bit lower than those of RT for very acid pH. It is worthwhile to 

note the importance of the formation of PbNO3
+
, whose concentration reaches almost 

one half of that of free Pb according to the speciation codes used in this work. Indeed at 

lower pH, the formation of PbNO3
+
 (a complex too weak to be distinguished from free 

Pb with this resin) could be the reason for the small discrepancies between AGNES and 

RT. 

 

For other pH-values, the results with all techniques are in excellent agreement with each 

other. From a methodological point of view, as we have explained before, we can 
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conclude the usefulness of the second wave strategy in AGNES to reduce the deposition 

time while retaining the accuracy of the determination of the free ion concentration. 

 

 

4.2 System Pb(II)-PDCA (2,6-pyridinedicarboxylic acid) 

4.2.1 AGNES determinations. 

We performed experiments in which Pb–PDCA complexation was varied by changing 

the pH. The total concentration of Pb was 2×10-6 M and the total concentration of 

PDCA  added was 4.5×10-6 M. The range of pH, with AGNES, was from 2.7 to 7.0.  

 

When non-inert complexes contribute to the flux (as expected in the case of PbPDCA), 

one can reduce the deposition time of AGNES [19]). This contribution can be used, for 

example, in standard 2P to reduce the total deposition time for a given Y. Alternatively, 

we have chosen here to fix a sufficiently high current (with respect to the blank) and, so, 

increase Y without the need of extremely large deposition times.  

 

To obtain the values of Y (also called Y1,b) we fixed the value of the current (I2) in a 

value high enough (8×10
-8
 A) so that the intensity of the blank could be negligible. As 

we can estimate the free concentration of Pb via numerical codes (e.g. MEDUSA [36]), 

we can calculate the required value of h to obtain the desired I with equation (3).  

 

Due to the proportionality between h and Y, we can compute the Y required for a given 

h with the data from a calibration. For instance, for Pb, with Y1,b=100 we usually have 

an h around 0.26, so 
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1,b

100

0.26

h
Y =  (9) 

Using this equation, we have obtained a convenient value of Y1,b at each pH (see Table 

3). 

 

The lability degree (ξ) is a measure of the capacity of the complex to dissociate and 

contribute to the flux. The higher the lability degree, the more favoured the global mass 

transport from the solution to the drop will be. For planar finite diffusion, under excess 

of ligand conditions or approximately constant free ligand concentration (e.g. by 

buffering of a much larger total ligand concentration), the lability degree  -when εK'>>1 

and δ>>µ¶  
-  can be approximated [37] via  

( )´
ξ

 + µK

δ
δ ε ∞

≈  (10) 

where δ is the diffusion layer thickness, ε is the ratio between the diffusion coefficients 

of the complex ML and the metal M (in this work ε is taken as unity), K´
 is the 

relationship between [PbPDCA] and [Pb
2+
] and µ∝

 is the reaction layer thickness whose 

value is calculated with  

M

´

a

µ =
D

k

∞  (11)  

where DM is the diffusion coefficient and 
´

ak  is  

´ *

a a Lk k c=  (12) 

and ka is the association kinetic constant of the complexation complex and 
*

Lc  is the 

concentration value of PDCA
2-
 at the bulk of the solution. The degree of  lability is not 
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constant across all our experiments because the change in the value of the pH implies a 

different concentration of PDCA
2-
 in each of them. 

 

Equating the number of moles of Pbº to be accumulated with the supply along the first 

substage (t1,a), we obtain 

( ) *

M M2 3 *

0 1,a 0 M

1 ' 4
4

3

D K c
r t r Yc

ε ξ
π π

δ
+

=  (13) 

The plot of the computed factor ( ) *

M1 'K cε ξ+  of the contribution to the flux, for these 

systems with parameters ka=9.44×10
7
 m

3
mol

-1
s
-1
; DM=9.45×10

-10
 m

2
s
-1
; r0= 1.41×10

-4
 

m; δ=2×10-5 m; ε=1 can be seen in figure 9. 

 

From eqn. (13), one can isolate  

( )
0

1,a

M3 1 '

r Y
t

D K

δ
ε ξ

=
+

 (14) 

The values of the computed parameters, which can serve as a guideline for the 

experiments with this system, are shown in table 3. Notice that we rounded the Y to 

powers of ten or five times a power of ten. With this rounded Y, we computed t1,a which 

was again rounded by excess to 50 s or 80 s. In all cases we observed overshoot along 

the first stage (data not shown), but as we took t1,b=3×t1,a [19] and we assume that free 

ligand concentration is approximately constant, the system achieved the desired 

AGNES conditions. 
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4.2.2 RT determinations and comparison with AGNES and ISE techniques 

The Pb(II)-PDCA complexation is studied also by the RT method, with the aim to 

compare the results with those obtained with AGNES and ISE techniques. The 

considered solutions have the same composition (KNO3 0.1 M, Pb(II) 2×10-6 M and 

PDCA 4.5x10
-6
 M), but different acidity. The range of the pH is between 2.8 and 7.0: in 

this interval of acidity, and particularly for the lowest values of pH, the soluble ligand 

PDCA is able to give a stronger complexation with respect to the previously considered 

NTA, so PDCA competes with the active groups of the resin also for the RT points with 

a high content of Chelex.  

 

In the range of pH here considered, from the value of K* it is possible to verify that a 

quantitative sorption is expected within the hypothesis that the metal is free in solution. 

In the presence of a ligand strong enough to compete with the resin, only a fraction of 

the metal is sorbed and, obviously, this fraction decreases as the reaction coefficient of 

the ligand in solution increase. Also the shapes of the RT curves are different, 

depending on the ratio M:L and on the strength of the complex between the metal and 

the added ligand. 

 

In Figure 4, examples of RT curve for the system Pb(II)-PDCA here considered are 

shown. As highlighted before, the RT curve falls steeply at low pH where a strongest 

competition between the soluble ligand PDCA and the iminodiacetic group of the resin 

appears. 

 

Table 2 reports the RT experimental conditions and the results obtained for all the Pb-

PDCA solutions here examined. 
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As for the previously investigated Pb(II)-NTA systems, from the values of the 

experimental reaction coefficients (Table 2, line 8) the free metal concentration for each 

solutions were calculated to perform a direct comparison with the results obtained by 

AGNES and ISE techniques. 

 

As done with Pb-NTA in section 4.1.2, we compute the theoretical free lead 

concentration from an average of previously published stability constants. Using  SC-

Query Vn 5.18, for PDCA
2-
 we obtained: βH

1=(5±1)µ10
4
 M

-1
 and βH

2=(7±1)µ10
6
 M

-2
  

for protonation. We  also computed βPb
1=(5±1)µ10

8
 M

-1
 and βPb

2=(40±9)µ10
10
 M

-2
. 

 

In figure 10, the comparison between AGNES, RT and ISE techniques is shown. The 

concentration values by AGNES were experimentally obtained with the parameters 

calculated before and shown in table 3. We see that these results are very similar 

compared with RT, ISE and theoretical SolEq (continuous lines with error bars). The 

results of the three techniques seem to suggest that Pb+PDCA constants in the literature 

might be slightly underestimated. 

 

5. Conclusions  

AGNES is a recent electroanalytical technique designed to quantify the free metal 

activity (or concentration) and RT is a consolidated technique especially suitable to 

perform an intercomparison with AGNES, due to its independent nature (i.e. non-

electroanalytical). 
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AGNES has the advantage of being relatively cheap if compared to spectroscopic 

methods (i.e. ICP-MS, ETAAS) and is clearly cheaper than RT. AGNES results can be 

obtained faster (even in the case of low concentrations) than RT (which require 

overnight equilibration) and the procedure is usually less laborious than RT. However, 

work is in progress in order to optimize this issue in RT. 

 

One important restriction of AGNES, in comparison with RT, is the necessity of 

amalgam formation, which, although can be seen as an increase of the selectivity,  

reduces the range of studied elements essentially to a few metals. This is a restriction 

common to many stripping techniques, such as, for example, pseudo-polarography [38] 

or Scanned Stripping Chronopotentiometry (SSCP) [39], to which AGNES is closed 

related given that AGNES conditions can be fulfilled in the foot of the wave (i.e. 

potentials close to the standard potential) of such techniques. Interferences of other 

electroactive species in the region of used potentials and the formation of intermetallic 

compounds in the amalgam have to be carefully considered in AGNES. 

 

On the other hand, a key interesting feature of the RT method is that many metal ions 

can be investigated simultaneously (provided that their binding constants with the 

ligands fall within the analytical window). Besides, using a strong chelating resin as the 

iminodiacetic Chelex 100, the total metal ion content is directly determined from the 

titration curves without any other independent measurement and the free metal ion is 

determined from the value of the reaction coefficient αM(L) experimentally obtained.  

 

An essential point in the application of AGNES is the suitable selection of the 

deposition program. The optimal deposition program depends on several issues ranging 
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from complex kinetics to hydrodynamics characteristics. Thus, this selection implies a 

certain difficulty if one wishes to use minimal values for the deposition times. It has 

been demonstrated that the contribution of the complexes can reduce the time needed to 

reach AGNES conditions. In this work, two new strategies for the proper selection of 

the deposition time have been suggested.   

 

A first strategy consists in the use of the second wave when inert complexes are present. 

It has been experimentally checked with PbNTA which is practically inert in the 

diffusion layer, so, for ordinary deposition potentials, its contribution is almost 

negligible; however, at very negative potentials the complex dissociates on the 

electrodic surface giving rise to a second wave.  This direct dissociation results in a 

significant reduction of the deposition time. 

 

The second strategy consists in the qualitative assessment of the kinetic contribution of 

the complexes. In this case, we have worked with the complex PbPDCA because is 

partially labile. This contribution has been estimated here, for the first time, from an 

expression of the lability degree of the complex, and thus, the deposition time has been 

conveniently reduced. 

 

The analytical window for RT is well defined, as detailed in Section 2.2, and it is 

strongly dependent on the nature of the resin and on the nature of all the complexes 

present in the samples. In the case of AGNES, the number and/or nature of the 

complexes (weak or strong, labile or inert) is relatively irrelevant for the free metal ion 

determination, but they have an impact (e.g. if they are labile or not) on the time needed 

to reach a given gain. In AGNES, the analytical window depends on the parameters 
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used, i.e. size of the electrode, applied gain(s) and characteristic times, etc. Estimations 

of the detection limit with AGNES have been reported previously for different 

particular conditions [12,20,22]. In practice, the upper limit of the analytical window in 

AGNES is not restricted because solubility problems in the amalgam can be overcome 

by decreasing the prescribed gain. 

 

In summary, AGNES and RT can correctly describe the metal speciation in the two 

considered systems (NTA and PDCA complexation with lead) as shown by the 

successful agreement of the results from both techniques and from ISE and theoretical 

calculations. Although they cannot be applied for in-situ speciation analysis (at least in 

their current implementations), they have already proved effective to assess the free 

metal concentration in synthetic and natural samples. 
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Tables 

Table 1 – Results of RT of Pb(II)-NTA systems by Chelex 100. (Number in parenthesis is the standard 

deviation). 

 

Pb(II)-NTA systems 

pH
(a)
 3.15 3.23 3.58 3.86 4.55 5.88 

V (mL) 100 50 100 50 100 50 

w (g) 0.010 – 1.905 0.007 - 0.952 0.010 – 1.218 0.004 - 0.936 0.009 - 1.862 0.007 - 0.934 

K*
(b) 

8.03×10
3 

1.04×10
4
 2.99×10

4
 6.87×10

4
 4.21×10

5
 8.48×10

6
 

ctot (M) 2.02(1) ×10
-6
 2.05(2) ×10

-6
 2.04(3) ×10

-6
 2.04(1) ×10

-6
 2.03(1) ×10

-6
 2.03(2) ×10

-6
 

Estimated parameters obtained from Eq. 1 

ctot,res (M) 1.96(2) ×10
-6
 1.96(2) ×10

-6
 1.95(2) ×10

-6
 2.02(1) ×10

-6
 2.04(3) ×10

-6
 1.99(2) ×10

-6
 

αM(L) 1.00(3) 1.00(5) 1.51(6) 2.8(1) 10.1(9) 95(20) 

Statistics 

r 
(c)
 0.991 0.993 0.995 1.000 0.992 0.849 

R.E.
(d)
 0.016 0.011 0.012 0.007 0.011 0.342 

(a) After equilibration with the resin. 

(b) K* evaluated at the pH of the resin titration, and for the ionic composition of the sample. 

Values obtained from the intrinsic complexation constants of lead(II) in resin phase [40]   

(c) Correlation coefficient.  

(d) ( ) ∑∑ −= 22
R.E.

calccalc
ccc . 

 

 

 Table 2 – Results of RT of Pb(II)-PDCA systems by Chelex 100. (Number in parenthesis is the standard 

deviation). 

 

Pb(II)-PDCA systems 

pH
(a)
 2.79 2.74 3.49 4.05 5.00 6.24 

V (mL) 100 50 100 50 100 50 

w (g) 0.015 – 1.844 0.061 – 1.385 0.051 – 1.844 0.049 –1.387 0.045 - 0.825 0.017 - 0.362 

K*
(b) 

2.69×10
3 

2.31×10
3
 2.48×10

4
 1.38×10

5
 1.87×10

6
 3.76×10

7
 

ctot (M) 2.03(1) ×10
-6
 2.01(2) ×10

-6
 2.03(1) ×10

-6
 2.01(1) ×10

-6
 2.03(1) ×10

-6
 2.03(2) ×10

-6
 

Estimated parameters obtained from Eq. 1 

ctot,res (M) 2.1(8) ×10
-6
 1.99(4) ×10

-6
 2.1(6) ×10

-6
 2.0(8) ×10

-6
 2.2(2) ×10

-6
 2.04(2) ×10

-6
 

αM(L) 15(8) 14.2(3) 94(4) 3.1(4) ×10
2
 1.4(2) ×10

3
 2.70(2) ×10

3
 

Statistics 

r 
(c)
 0.994 0.999 0.985 0.996 0.971 0.997 

R.E.
(d)
 0.214 0.028 0.261 0.033 0.069 0.008 

(a) After equilibration with the resin. 
(b) K* evaluated at the pH of the resin titration, and for the ionic composition of the sample. 

Values obtained from the intrinsic complexation constants of lead(II) in resin phase [40] 

(c) Correlation coefficient.  

(d) ( ) ∑∑ −= 22
R.E.

calccalc
ccc . 
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Table 3– Values of the necessary parameters to perform the different AGNES experiments for the system 

Pb(II)-PDCA in the range of pH 2.8-7.0.  

 

 

pH expected 
*

Mc  / M 
h
(a)
 /  

A M
-1 calculated Y 

(b)
 Applied Y 

calculated t1,a /s
 

(c)
 

applied t1,a /s 

2.79 1.45×10
-7
 0.553 2.13×10

2
 5×10

2 
51 50 

3.07 8.49×10
-8 

0.942 3.62×10
2 

5×10
2
 37 50 

3.51 3.12×10
-8
 2.56 9.86×10

2
 10

3
 30 50 

4.00 1.12×10
-8
 7.14 2.75×10

3
 5×10

3
 69 80 

4.46 4.68×10
-9
 17.1 6.58×10

3 
5×10

3
 38 50 

5.03 2.45×10
-9
 32.6 1.26×10

4
 10

4
 52 50 

6.18 1.62×10
-9 

49.3 1.90×10
4
 10

4
 40 50 

6.97 1.58×10
-9 

50.4 1.94×10
4
 10

4
 39 50 

 

(a) 
h has been computed with eqn. (3)  

(b) 
Y=Y1,b has been computed with eqn. (9)  

(c) 
with eqn. (14) using (rounded) applied Y values.   
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Fig 1 : Outline of the potential program of AGNES with the strategy of splitting the first 

stage into two potential steps or pulses (2P). Thick discontinuous lines indicate the 

longer part of the first stage (when stirring is applied), whereas thin continuous lines 

indicate that the solution remains without stirring. 
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Fig 2 : Examples of currents along the first stage (panel a, in a case of overshoot) and 

second stage (panel b) of an AGNES experiment of two potentials (2P) in the first stage. 

The arrow indicates the current measured after t2 seconds of application of the 

reoxidation potential. This I-value leads  to the determination of the free metal 

concentration. 

Published in Analytica Chimica Acta 2007, vol 599, p 41-50 
DOI: 10.1016/j.aca.2007.07.055 reprints to galceran@quimica.udl.cat



 31  

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

1/w  / g-1

c 
/ µ

M

 
 

Fig 3: RT curves obtained at different acidities for Pb(II)-NTA systems in KNO3 

solution with Pb(II) 2×10-6 M and NTA 5×10-6 M. Markers:  �  corresponds to pH = 

3.15, V= 100 mL, w = 0.010 ÷1.905 g; ∆ corresponds to pH = 3.23, V= 50 mL, w = 

0.007 ÷ 0.952 g; and  corresponds to pH = 4.55, V= 100 mL, w = 0.009 ÷ 1.862 g. 

The curves are calculated from the parameters of equation 4 experimentally determined 

as described in the text. 
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Fig 4: RT curves obtained at different acidities for Pb(II)-PDCA systems in KNO3 

solution with Pb(II) 2×10-6 M and PDCA 4.5×10-6 M. Markers: � corresponds to pH = 

2.74, V= 50 mL, w = 0.061 ÷1.385 g;  corresponds to pH = 4.05, V= 50 mL, w = 

0.049 ÷1.387 g; and � corresponds to pH = 6.24, V= 100 mL, w = 0.017 ÷ 0.362 g. The 

curves are calculated from the parameters of equation 4 experimentally determined as 

described in the text. 
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Fig 5: NPP wave for Pb and PbNTA. Solution: [Pb

2+
]total=10

-5
 M; [NTA

3-
]total=2.4×10-5 

M. � NPP wave for Pb
2+
. � NPP wave for the system PbNTA. Initial potential = -0.1 

V; end potential = -1.2 V; interval time = 1.0 s; pulse time = 0.040 s; step potential = 

0.040 V; drop size:  r0 = 2.03×10
-4
 m.  
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Fig 6: Representation of the faradaic current versus t1,b. Solution: [Pb

2+
]total=2×10-6 M. 

[NTA
3-
]=5×10-6 M. � Second wave strategy: t1,a=11 s; Y1,a=10

20
; Y1,b=250. � Standard 

2P strategy: Y1,a=10
10
; Y1,b =250; t1,a= 175 s and t1,b=525 s.  
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Fig 7: Representation of the currents along the first stage for different pH-values. The 

achievement of a horizontal final value of the current indicates AGNES conditions have 

been reached before the stripping stage (in this case with the second wave strategy). 

Solution: [Pb
2+
]total=2×10-6 M; [NTA

3-
]=5×10-6 M. t1,a=11 s. t1,b= 300 s. Y1,b=250. ���� 

pH=4.09. � pH= 5.07. � pH=6.01. 
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Fig 8: Representation of logarithm of [Pb] versus pH. Solution:   [Pb

2+
]total=2×10-6 M. 

[NTA
3-
]=5×10-6 M. Y1,b=250. Continuous line: SolEq calculations The mean values of 

each constant are used to obtain the calculated solid curve. The error bars are derived 

from the propagation of errors from the input values employed in the free metal ion 

concentration;� ISE results; � RT results; � Second wave strategy; � Standard 2P 

strategy. 
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Fig 9: Plot of the value of a factor of the flux ( ) *

M1 'K cε ξ+  versus pH (see eqn. (13)). 

Solution: [Pb
2+
]total=2×10-6 M; [PDCA]total = 4.5×10-6 M.  
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Fig 10: Representation of the logarithm of [Pb] versus pH in a solution with 

[Pb
2+
]total=2×10-6 M and [PDCA]total = 4.5×10-6 M. Continuous line: SolEq calculations 

with average constants. The mean values of each constant are considered and used to 

obtain the calculated curve. The error bars are derived from the propagation of errors 

from the input values employed in the free metal ion concentration; � ISE results; � 

RT results; � AGNES results.  
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