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Abstract 18 

For seasonal energy storage using solar energy in buildings heating and DHW, thermochemical technology 19 

represents the most promising alternative due to the virtually absence of heat losses during storage period. 20 

This work focuses on silicone foams, filled by MgSO4∙7H2O, as innovative composite sorbents for sorption 21 

thermal energy storage applications. The necessity to enclose the salt hydrate in the polymeric foam arises 22 

for overcoming the issue of swelling, agglomeration, and/or deliquescence of the salt during its de/hydration 23 

process. Indeed, the foam with its flexible structure allows the safe volume expansion during the hydration 24 

phase of the salt. The foam samples presented in this paper were obtained by mixing the salt hydrate at 25 

various percentages (from 40 wt.% up to 70 wt.%) with a mixture of two water vapour permeable silicones. 26 

The foams were characterized by a complete physicochemical and morphological examination in order to 27 

evaluate their actual application in sorption energy storage systems. It was demonstrated that a good link 28 

seems to be established between the foam and the salt, and that the de/hydration capacity of the salt is not 29 

hindered by the foaming process, storage ability and storage density of the composites are expected to be in 30 

line with those of the pure material. 31 
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1. Introduction 1 

According to the International Energy Agency (IEA), space heating and cooling together with water heating 2 

account for about 60% of global energy consumption in buildings (International Energy Agency, 2013). This 3 

means that the heating and cooling in buildings represents the main sector in which it is possible to achieve 4 

relevant energy and Greenhouse gas (GHG) emission savings. Solar energy represents the most attractive 5 

solution to reduce the dependency on fossil fuels, especially for space heating and domestic hot water 6 

(DHW) production. In such a context, the roadmap of the Renewable Heating and Cooling platform 7 

identified as one of the priorities the development of Solar-Active-Houses (SAH), able to cover up to 60% of 8 

their energy demand by means of solar source (RHC European Technology Platform, 2014). A crucial 9 

technology to develop in order to achieve this goal is represented by the seasonal thermal energy storage 10 

(TES), able to provide heating energy during winter season by shifting the solar thermal energy harvested 11 

during summer season (Xu et al., 2014).  12 

Different technologies are available for storage of solar energy, namely sensible heat, latent heat and 13 

thermochemical heat storage (Xu et al., 2014). However, for seasonal energy storage, thermochemical 14 

technology represents the most promising alternative, due to the virtually absence of heat losses during 15 

storage period. A growing interest has been recently devoted to thermochemical storage and thermochemical 16 

storage materials (TCMs), with the aim of synthetizing materials with high energy density and cycle stability 17 

for long-term operation (Aydin et al., 2015; Cabeza et al., 2017; Donkers et al., 2017).  18 

Several classes of TCMs were evaluated, such as zeolites (Jänchen et al., 2004) and zeotypes (Yu et al., 19 

2013), but among them, salt hydrates present outstanding properties, in terms of theoretical storage capacity 20 

in the range of temperatures of interest (<100°C), which can reach 3 GJ/m3 (Donkers et al., 2017; 21 

Rammelberg et al., 2016). Nonetheless, their practical application still needs research efforts, in order to 22 

overcome different problems arising in the realisation of a storage system. Among them, the most critical are 23 

represented by the low thermal conductivity of the materials (Kleiner et al., 2017), that affect heat transfer, 24 

and the agglomeration and swelling phenomena, that limit vapour permeation, inducing degradation after 25 

cycling (De Jong et al., 2014; Donkers et al., 2016). In order to prevent such issues, the use of composites 26 

sorbents was proposed and currently represents a topic of great interest (Gordeeva and Aristov, 2012). This 27 

class of materials is based on two components: the host matrix and the inorganic salt placed inside the matrix 28 

pores. Several types of matrices and/or additives were proposed for application with salt hydrates, such as 29 

mesoporous materials, clays and carbonaceous structures (Xu et al., 2018; Zhao et al., 2016). 30 

Whiting et al. (Whiting et al., 2013, 2014) and Hongois et al. (Hongois et al., 2011) used the wet 31 

impregnation method for the realisation of a MgSO4 into different types of zeolites. Outcomes of the 32 

experimental campaigns carried out was that the form-stable composite represent a promising TCM for long-33 

term storage purposes, thanks to their improved thermal properties, and thermal and chemical reliability. 34 

Posern et al. (Posern and Kaps, 2010) used wet impregnation technique on a mixture of MgSO4 and MgCl2 in 35 
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attapulgite matrices. Several studies on composites CaCl2 are reported: investigated matrix and synthesis 1 

method include impregnation on iron silicate (Ristić and Henninger, 2014) and bentonite (Kerskes et al., 2 

2010), impregnation in mesoporous silica gel (Courbon et al., 2017; Zhu et al., 2006) and synthesis in silica 3 

gel with the sol-gel method (Mrowiec-Białoń et al., 1997). Jabbari-Hichri et al. (Jabbari-Hichri et al., 2017) 4 

studied CaCl2 with three different matrices: silica gel, alumina and bentonite showing that the best 5 

performance in terms of stored/released heat and water sorption capacity was obtained with the silica gel 6 

impregnated composite.  7 

Recently, also different porous materials and structures were proposed. For instance, (Liu et al., 2015) 8 

developed a composite mesoporous honeycomb element based on Wakkanai siliceous shale (WSS) and 9 

lithium chloride (LiCl) for application in an open sorption thermal energy storage system, that showed good 10 

ciclability. Gaeini et al. (Gaeini et al., 2018) reported the comparison among composite sorbents employing 11 

calcium chloride as salt and different matrixes, namely, vermiculite, expanded graphite and a novel micro-12 

encapsulation method based on ethyl cellulose, with high content of salt (>80%wt.). (Grekova et al., 2016) 13 

proposed the synthesis of composites with multi-wall carbon nanotubes embedding CaCl2, LiCl and LiBr. 14 

Interestingly, they investigated not only water but also methanol as working fluid for closed sorption TES 15 

applications.  16 

Generally, composites present enhanced properties with respect to the pure salts, in terms of thermal 17 

conductivity and chemical and physical stability. However, the major limit of the investigated matrixes is 18 

their rigid structure, which may suffer of long-term stability issues, due to the forces induced by the salt 19 

solution expansion during the hydration phase. Furthermore, the salt is usually confined into open pores, 20 

which are not able to keep the solution in case of oversaturation, causing a degradation of the composite 21 

itself. In this regards, polymeric foams can overcome most of the reported issues, since they present a 22 

flexible structure, allowing for the safe volume expansion during the hydration phase. Furthermore, some 23 

polymeric foams are permeable towards water vapour, allowing the vapour reacting also with salt confined 24 

inside closed porosity (Robb, 1968; Shui Wai Lin and Salvador Valera Lamas, 2011). This would inhibit the 25 

loss of salt solution in case of oversaturation. These features can be beneficial for the development of 26 

innovative composites with high energy storage density, thanks to the possibility of varying the pore size and 27 

pore volume, thus hosting relevant amount of salt. A similar approach has been successfully proposed for the 28 

realization of composites based on zeolites and polymeric foams for adsorption heat pump applications 29 

(Luigi Calabrese et al., 2017a, 2017b).   30 

In the present work, a flexible composite for seasonal storage of solar energy is presented for the first time, 31 

consisting of silicone foams filled with MgSO4∙7H2O. Different foam samples were synthetized by mixing 32 

the salt hydrate at various percentages (from 40 wt.% up to 70 wt.%) with a mixture of two water vapour 33 

permeable silicones. The foams were then characterized by means of thermogravimetric measurement and 34 

FTIR analysis Foam morphology was evaluated by optical 3D digital microscope and scanning electron 35 

microscopy. Furthermore, the composition of the different phases was determined by energy dispersive 36 
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electron microscopy (SEM-FIB Zeiss Cross Beam 540). Furthermore, the composition of the different phases 1 

was determined by energy dispersive spectroscopy (EDS) (Aztec Oxford).  2 

In order to assess the ability of the synthetized foam-salt composites to properly react with water vapour 3 

under typical working conditions, thermo-gravimetric dehydration tests were performed by means of a 4 

modified Labsys Evo SETARAM apparatus, whose main features are reported in the literature (Frazzica et 5 

al., 2014). The tests were performed as follows: the sample was weighted in an external microbalance, and 6 

then loaded inside the TG apparatus. Evacuation was performed at room temperature, down to 1 10-3 mbar. 7 

Afterwards, water vapour generated by an evaporator at 20°C was admitted in the testing chamber creating a 8 

pure water vapour atmosphere at 23.4 mbar. Subsequently, a heating ramp from 30°C up to 150°C was 9 

performed to evaluate the amount of water exchanged under these conditions. For each sample, three 10 

different specimens were extracted and tested, in order to take into account also possible inhomogeneity of 11 

the prepared samples. 12 

 13 

3. Results and discussion 14 

 15 

3.1. Salt hydrate and matrix characterization 16 

Figure 3(a-c) shows the typical spectrum of MgSO4∙7H2O salt and siloxane compounds, used in the 17 

composite foams, as filler and matrix, respectively.  18 

 19 
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peak related to stretching vibrations of its reactive Si-H group. Of course, this peak was not observed in 1 

PDMS compound, that showed instead two well defined peaks at 2910 cm-1 and 680 cm-1 that can be related 2 

to stretching and bending of Si-OH groups, respectively (Luigi Calabrese et al., 2017b). 3 

 4 

Thermal analysis was used to obtain information about both the dehydration of the pure salt hydrate and the 5 

stability of the polymeric matrix in a large range of temperatures. The results of the TG measurements are 6 

reported in Figure 4(a-b). TGA curves of the cross-linked PDMS and PMHS compounds show a small 7 

weight loss (-5.45%) in the temperature range 25-300°C (Figure 4a). In order to better evaluate the mass loss 8 

at increasing temperature, also the first derivate of TG-signal (DTG) was reported in Figure 4b. Hosseini et 9 

al. (Hosseini and Ameri, 2017) reported that the TGA curve of the PDMS/PMHS shows a large weight loss 10 

between 250-375°C, indicating that the decomposition of the silicone structure occurs at temperatures higher 11 

than the investigated range. In addition, Hosseini and Tanaka (Hosseini and Ameri, 2017; Tanaka et al., 12 

2010) attribute the slight weight loss up to 200°C to the removal of hexane and hydrogen formed by the 13 

reaction of PDMS and PHMS. The lack of any peaks in the first derivate signal, reported in Figure 4b, is a 14 

demonstration that the degradation process of the polymer is still starting, but it does not become relevant 15 

until 300°C. Indeed, it is worth pointing out that the range of temperatures in which the composite foam will 16 

be employed (25-130°C approximately) is not contained in the degradation range of the TG-measurements 17 

study, thus it is possible to assert that the pure foam is stable in the range of temperature needed for the 18 

application.  19 

The thermal analysis of pure MgSO4∙7H2O shows a significant sensitivity to the dehydration process with the 20 

increasing of temperature. In particular, analysing the curve, the dehydration process of the salt can be 21 

divided in three steps, each one accompanied by a peak showed in the first derivate signal in Figure 4b. Each 22 

dehydration step corresponds to the loss of one or more molecules of water. Going into more details: 23 

 Stage I: The first dehydration step occurs between room temperature and 50°C, consisting of 6.45% 24 

mass loss; this stage can be related to the loss of a water molecule: the transition of MgSO4∙7H2O to 25 

MgSO4∙6H2O occurred. It is worth to note that this process already starts at about 25°C, indicating 26 

that the dehydration in magnesium sulphate hexahydrate is energetically favoured.  27 

 Stage II: The second stage takes place between 50°C and 245°C. This stage is characterized by the 28 

largest mass loss (43.24%) in the studied range of temperatures.  29 

In this case, two dehydration sub-steps can be identified. The first consists of an abrupt reduction of 30 

mass weight and occurs between 50°C and 150°C. Vice versa, between 150°C and 245°C a more 31 

gradual reduction in mass loss takes place. In the first sub-step, a reduction of about 38.71% is 32 

calculated, indicating a loss of approximately 5.35 water molecules. A further weight loss of 4.53% 33 

was estimated in the second sub-step. Consequently, 0.62 water molecules are released in this case. 34 

Globally, this dehydration stage involves the transition from MgSO4∙6H2O to MgSO4∙0.1H2O.  35 
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- loss of salt during the handling of the samples; and 1 

- incomplete incorporation of the salt inside the foam during the foaming process, due to the 2 

incomplete foaming process induced by the excessive amount of salt employed.  3 

Table 2: Water mass loss measured during the performed tests and actual salt content calculated for each tested 4 
samples. 5 

Sample 
Initial mass 
sample (mg) 

Total weight 
loss (mg) 

Nominal salt  
content 
[wt.%] 

Water mass 
loss  

[wt.%] 

Actual salt  
content 
[wt.%] 

Pure 
MgSO4ꞏ7H2O 

37.39 16.4 100 43.90 100 

FOAM40 52.62 8.7 40 41.29 37.15 
FOAM50 96.86 17.7 50 36.50 41.08 
FOAM60 110.87 28.1 60 42.02 56.74 
FOAM70 90.37 23.6 70 37.05 58.37 

 6 

Summing up the results obtained from the experimental campaign on the silicone foams added with 7 

MgSO4∙7H2O, it is possible to assert that the amount of salt hydrate, that can be added to the matrix, have to 8 

be carefully evaluated because it was observed that high amount of filler does not assure a correct embedding 9 

in the matrix. The hypothesis that a salt hydrate threshold value, approximately 60%, beyond which the 10 

silicone matrix is not able to efficiently incorporate salt hydrate, is highly credible. Furthermore, the foams 11 

with lower amount of salt hydrate (FOAM40 – FOAM50) show a better foam capability that assures also a 12 

high flexibility of the composite porous structure. Nevertheless, they clearly show lower dehydration ability 13 

than the sample with a higher content of filler (FOAM60 – FOAM70). Therefore, once again, the foam 14 

realized with an amount of filler of around 60% seems to be a good compromise between foam ability, 15 

flexibility and de/hydration capacity. 16 

Regarding the thermal energy storage applications, the results indicated a sensibility to the salt content in 17 

terms of de/hydration behavior in a range of over 20 K, with an increasing tendency to release water 18 

molecules at high temperature for a higher salt content. Such an aspect is of great interest for thermal energy 19 

storage applications, foreseeing the possibility of tailoring the material for each specific application (i.e. 20 

charge/discharge temperature requirement) by simply changing the amount of salt within the composite. 21 

Finally, since a good link seems to be established between the foam and the salt, and that the de/hydration 22 

capacity of the salt is not hindered by the foaming process, storage ability and storage density of the 23 

composites are expected to be in line with those of the pure material. 24 

 25 

4. Conclusions 26 

The paper deals with innovative composite sorbents for sorption storage applications, realised by embedding 27 

MgSO4ꞏ7H20 inside a polymeric matrix. The polymeric material, made by a mixture of 28 

poly(methylhydrosiloxane) (CH3(H)SiO)n and a silanol terminated polydimethylsiloxane with proper 29 

catalyst, was employed to form a polymeric foam that represents the hosting matrix for the salt hydrate, 30 
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MgSO4ꞏ7H2O, which was chosen for its excellent sorption capacity. The polymers were selected for their 1 

high permeability to water vapour, in order not to affect the water vapour diffusion during real operating 2 

conditions.  3 

Foams with various salt hydrate percentages (from 40 wt.% to 70 wt.%) were investigated, by means of: 4 

FTIR analysis that has demonstrated that all reactive sites of PDMS and PMHS siloxane compounds 5 

chemically interacted together making a well cross-linked network. Morphological analysis has evidenced 6 

that the morphology of the foam samples does not depend on the amount of filler and is characterized by 7 

spheroidal shaped cells, producing a mixed open/closed cell structure with bubbles homogeneously 8 

distributed along the cross section well interconnected each other, so that, the water vapour can easily diffuse 9 

inside the porous structure. SEM microscopy has revealed that the salt is confined and constrained inside the 10 

porous structure; and, finally, the study of the dehydration process of the salt inside the foam has permitted 11 

to suppose that a salt hydrate threshold value, approximately 60%, exists beyond which the silicone matrix is 12 

not able to efficiently incorporate salt hydrate. Indeed, the foam realized with an amount of filler of around 13 

60% seems to be a good compromise between foam ability, flexibility and de/hydration capacity.  14 

Regarding the thermal energy storage applications, the results indicated a sensibility to the salt content in 15 

terms of de/hydration behavior in a range of over 20 K, with an increasing tendency to release water 16 

molecules at high temperature for a higher salt content. It is then possible to conclude that the investigated 17 

composite foams can represent a promising candidate for thermal energy storage applications.  18 
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