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Summary 

Accurate normalisation of data is required to correct for different efficiencies and errors 

during the processing of samples in reverse transcription PCR analysis. The chicken is 

one of the main livestock species and its genome was one of the first reported and used 

in large scale transcriptomic analysis. Despite this, the chicken has not been 

investigated regarding the identification of reference genes suitable for the quantitative 

PCR analysis of growth and fattening genes. In this study, five candidate reference 

genes (B2M, RPL32, SDHA, TBP and YWHAZ) were evaluated to determine the most 

stable internal reference for quantitative PCR normalization in the two main commercial 

muscles (pectoralis major (breast) and biceps femoris (thigh)), liver and abdominal fat. 

Four statistical methods (geNorm, NormFinder, CV and BestKeeper) were used in the 

evaluation of the most suitable combination of reference genes. Additionally, a 

comprehensive ranking was established with the RefFinder tool. This analysis identified 

YWHAZ and TBP as the recommended combination for the analysis of biceps femoris 

and liver, YWHAZ and RPL32 for pectoralis major and RPL32 and B2M for abdominal 

fat and across-tissue studies. The final ranking for each tool changed slightly but overall 

the results, and most particularly the ability to discard the least robust candidates, were 

consistent between tools. The selection and number of reference genes was validated 

using SCD, a target gene related to fat metabolism. Overall, the results can be directly 

used to quantitate target gene expression in different tissues or in validation studies 

from larger transcriptomic experiments. 

 

Keywords:  gene expression; normalisation; endogenous control; expression stability; 

housekeeping gene; lipid metabolism 
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Introduction 

Chicken production is spread worldwide and represents one of the main sources 

of dietary protein (in the form of meat and eggs) in the world. Chicken is an ideal model 

for examining animal growth trait development, which has increased spectacularly over 

the last 30 years. A 2001-strain broiler was estimated to have reached 1,815 g body 

weight at 32 days of age with a food conversion of 1.47, whereas a 1957-strain would 

not have reached that weight until 101 days of age with a food conversion of 4.42 

(Havenstein et al., 2003). Unfortunately this growth rate is accompanied by increased 

body fat deposition, high mortality and high incidence of metabolic diseases and 

skeletal disorders (Julian, 2005). The genetic mechanisms of chicken growth traits have 

been studied using quantitative trait loci mapping through genome-scan and candidate 

gene approaches, genome-wide association studies (GWAS), comparative genomic 

strategies, microRNA and epigenomic analysis (reviewed in Xu et al. (2013)). Current 

trends of integration of genetics and functional genomics (in the form of analysis of 

global gene expression data using microarray or RNA-seq technology) will help 

characterising genes that play central roles in the processes leading to rapid growth. In 

this scenario, quantitative real-time PCR (qPCR) is the preferred independent method 

for the validation of global expression studies (VanGuilder et al., 2008).  

Given its sensitivity, specificity, accuracy, large dynamic range of linear 

quantification, cost and its speed, qPCR has also become the more accepted standard for 

nucleic acid quantification. Nowadays this is a commonly available method in most 

molecular biology laboratories that can be used to detect even low abundant mRNAs 

and slight variation in gene expression levels. Nevertheless, the reliability of the final 

quantification result depends heavily on all elements in the workflow, such as the 

quality of the input template (RNA integrity and absence of inhibitors), reverse 
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transcription and qPCR efficiencies. To account for these and avoid bias, accuracy of 

qPCR relies on normalisation to an internal reference gene. Ideally, the expression of a 

reference gene should remain constant in all tissues analysed and under every 

experimental condition. Appropriate validation of reference genes in any new 

experimental system is therefore crucial. Moreover, it is today generally accepted that 

normalization to a single reference gene is clearly suboptimal for accurate data 

interpretation (Vandesompele et al., 2009). Currently, the use of multiple internal 

control genes is considered as an essential approach for an accurate normalization of 

data, which stresses the need to identify several candidate normalisation controls.  

While the evaluation of expression stability of potential reference genes has been 

addressed on growth and fattening-related tissues for species such as pigs (McBryan et 

al., 2010), beef (Bonnet et al., 2013) and fish (Fuentes et al., 2013), reports in chicken 

have mostly concentrated on the immune cells (De Boever et al., 2008; Yue et al., 2010; 

Kuchipudi et al., 2012; Yang et al., 2013). Therefore, there is a general lack of 

information regarding suitable reference genes for qPCR analysis of target genes 

expressed in skeletal muscle, fat and liver. In the present study we have tested five 

commonly used reference genes for gene expression stability in the two most 

economically-important muscles in chicken (breast and thigh), liver and abdominal fat. 

Four algorithms have been used to assess the suitability of these control genes 

individually in each tissue and across tissues. 

 

Materials and Methods 

1.1 Animal material 

Samples of pectoralis major (breast), biceps femoris (thigh), liver and abdominal fat 

were collected from 32 ISA Brown hens at 32 weeks of age. Animals were slaughter by 
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exsanguination and tissues collected within the following 15 minutes. Samples were 

immediately frozen in liquid nitrogen and then stored at -80ºC until analysis. All 

experimental procedures were approved by the Animal Ethics Committee from the 

Catalan Government (reference code: 7304 and 7305). 

 

1.2 RNA isolation and retrotranscription 

Liver and muscle samples (0.5 g approximately) were ground with mortar and pestle in 

liquid nitrogen and homogenized with a mechanical homogenizer (IKA Ultra-turrax 

T10, IKA-Werke GmbH) with a 5 mm rotor. RNA was isolated by the acid phenol 

method (Chomczynski and Sacchi, 1987) using the TRI Reagent (Sigma-Aldrich). RNA 

was quantified by a Nanodrop ND-1000 spectrophotometer and checked for integrity in 

formaldehyde-agarose gels. 

Reverse transcription to cDNA was performed from 1.5 µg of DNase-treated (Turbo 

DNA-free, Ambion/LifeTechnologies) RNA with 50 U of Maxima H-Minus Reverse 

Transcriptase (Fermentas GmbH), in 1 x enzyme buffer, 0.5 mM dNTPs. 50 pmol of 

random hexamers, 50 pmol Oligo(dT) primer. The reactions were incubated at 25ºC for 

5 min, 50ºC for 30 min and 85ºC for 10 min. Upon completion of the reactions, cDNA 

samples were diluted 1:30 with H2O prior to expression analysis and stored at -40ºC. 

 

1.3 Real-time Quantitative PCR (qPCR) analysis 

Five potential reference genes were chosen for being frequently used as endogenous 

controls in expression studies in other livestock species (Erkens et al., 2006; McBryan 

et al., 2010; Damon et al., 2012), paying close attention to selecting genes that belong to 

different functional classes (Table 1): beta-2 microglobulin  (B2M), ribosomal protein 
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L32  (RPL32), succinate dehydrogenase complex, subunit A, flavoprotein (Fp) (SDHA), 

TATA box binding protein (TBP) and tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide (YWHAZ). For each gene, a set of 

primers was designed with Primer3Plus tool (www.bioinformatics.nl/primer3plus) using 

the qPCR default parameters (Table 1). Primer pairs were designed so as to fall in 

different exons, as inferred from chicken gene organization data available in Ensembl 

(www.ensembl.org, chicken genome assembly Galgal4), and to amplify a fragment of 

less than 150 bp (Table 1). Fleige and Pfaffl  (2006) demonstrated that real-time qPCR 

based on short amplicons (in the range of 70-250 bp) is independent of RNA integrity 

and therefore give more accurate results than longer amplicons. The amplification 

reaction was performed in triplicate in a total volume of 8 µL containing 1x Maxima 

SYBR Green/ROX qPCR Master Mix (Fermentas), 200 nM of forward and reverse 

primers and 3 µL of 30-fold diluted cDNA as template. Amplification of the cDNA was 

achieved on an ABI 7500 Real Time PCR System (LifeTechnologies) following the 

manufacturer’s conditions: an initial activation and denaturation step of 10 min at 95°C 

followed by 40 cycles consisting of 10 s at 95°C and 1 min at 60°C. Additionally, a 

dissociation curve protocol was run after every reaction in order to control the 

specificity of the amplified product.  

Two different approaches were tested to determine the amplification efficiencies of the 

qPCR assay. Assay efficiency was evaluated with a serial 10-fold dilution of a pool of 

12 cDNAs from the experiment (three from each tissue). These were used to generate 

standard curves for the five genes analysed. PCR efficiency (E) was calculated as 

follows: 

100)110( )/1( xE S  
 

where S is the slope from the standard curve (Hellemans et al., 2007). 

http://www.bioinformatics.nl/primer3plus
http://www.ensembl.org/
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In addition, individual efficiency of the assays was estimated with the statistical 

algorithm Real-time PCR Miner (Zhao and Fernald, 2005) using the raw fluorescence 

data as input. 

 

1.4 Analysis of gene expression stability  

Gene expression stability was evaluated with four different statistical algorithms: 

BestKeeper (Pfaffl et al., 2004), geNorm (Vandesompele et al., 2002), NormFinder 

(Andersen et al., 2004) and the comparative delta-Ct method (Silver et al., 2006). The 

four methods make use of the cycle threshold (Ct) values to determine the most stably 

expressed genes. BestKeeper analyses the inter-gene relationship, calculating the 

Pearson correlation coefficient (r), the probability and the sample integrity and the 

expression stability within each reference gene with an intrinsic variance of expression 

(Pfaffl et al., 2004). Data from the genes showing higher correlation values are 

combined to compute the geometric mean of Ct values (BestKeeper Index). Next, the 

Pearson’s correlation coefficient between each candidate reference gene and the index 

(rI) is calculated, which gives and estimation of the contribution of the gene to the 

BestKeeper Index. GeNorm determines the pairwise variation of a particular gene with 

all other control genes as the standard deviation of the logarithmically transformed 

expression ratios. A measure of internal control gene-stability (M) is defined by 

GeNorm as the average of the pairwise variation of one gene with all the other potential 

reference genes (Vandesompele et al., 2002). The lower the M value, the more stable the 

expression of that gene is. To select the best performing reference genes, the program 

recalculates the M stability measures after removal of the least stable gene and repeats 

the process until only the two most stable genes remain (Vandesompele et al., 2002). To 

test the minimum number of reference genes needed for adequate data normalization, 
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geNorm calculates a pairwise variation (V) between using n (number) and n+1 reference 

genes. Large V values indicate a significant effect of the additional gene on data 

normalization and endorse the need of including this gene among the controls. On the 

other hand, NormFinder (Andersen et al., 2004) is a model-based approach that enables 

estimation not only of the overall variation of the candidate normalization genes, but 

also of the variation between subgroups of the same sample set. NormFinder combines 

the intra- and intergroup variation to estimate, for each individual gene, a stability value 

(Sv), which represents a practical measure of the systematic error that will be introduced 

when using the investigated gene. Candidate reference genes can then be ranked 

according to the Sv value, where the lowest values correspond to the most stable genes. 

The NormqPCR and ReadqPCR bioconductor packages were used to compute the 

geNorm and Normfinder gene stability values in R. The comparative delta-Ct method 

compares Ct values from two candidate reference genes within each sample. The mean 

and SD from these data are computed.  If the ΔCt value between the two genes remains 

constant when analysed in different samples, it means both genes are stably expressed 

(co-regulated) among those samples. If the ΔCt fluctuates, this indicates that one or both 

genes are variably expressed. The comparison is repeated for all gene-pairs and the 

mean of the SD is calculated (Silver et al., 2006).  Finally, the Reffinder application 

(http://www.leonxie.com/referencegene.php) was used to assess the overall ranking for 

the five genes. Reffinder computes the rankings for each of the four methods above, 

assigns a weight to each gene according to its ranked position and calculates the 

geometric mean of the weights to produce an overall final ranking. 

 

1.5 Validation of reference gene analysis 

http://www.leonxie.com/referencegene.php
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One gene of interest coding for the fatty acid desaturase stearoyl-coA desaturase (SCD) 

was used to validate the selected reference genes. Primers were designed using 

Primer3Plus software as described above (Table 1). The experimental procedure was the 

same as used in the selection of reference genes. The relative expression level of the 

target gene was calculated with different normalization factors based on the most stable 

gene, the most unstable gene or the geometric mean of the two most stable genes and 

the two most unstable genes. 

 

Results 

Data normalization using a set of reference genes is nowadays a current and crucial 

procedure when analysing the expression levels of target transcripts by qPCR in 

different tissues or under different conditions. In the present study, the transcript 

abundance of five potential reference genes was assessed in chicken tissues related to 

fat deposition and growth. A total of 128 cDNA samples (32 animals x 4 target tissues) 

were analysed. 

 

2.1 Real-time qPCR experiment and PCR efficiency 

Real-time qPCR was used to estimate the RNA transcription level of the five candidate 

reference genes in four adult tissues. Specificity of amplification and the absence of 

primer dimer formation were supported by the analysis of melting curves. The PCR 

efficiency of each primer pair was first calculated through the standard curve method in 

a pool RNA samples representing three biological replicates of each tissue. Results from 

the standard curve method were then compared with the efficiency value obtained 

through the algorithm RT-PCR Miner. In our hands, the efficiency of the qPCR assays 

did not differ substantially between the five genes. (Supplementary Table 1). 
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Efficiencies calculated by RT-PCR Miner were lower (range 81-88%) than those 

obtained with the standard curve method (range 97-108%). However, all genes gave 

comparable efficiencies within each method. The standard curve method is time 

consuming, requiring the production of repeatable and reliable standards (Pfaffl, 2001) 

and relies on the assumption that the PCR efficiency of each amplicon is constant in all 

samples, which rarely can be achieved in real experiments, strongly influencing Ct-

based stability or quantification analyses. Therefore, RT-PCR Miner algorithm, which 

uses the single raw fluorescence data as an input (Zhao and Fernald, 2005), is a useful 

alternative to calculate the PCR efficiency for each primer pair in each tissue type. 

The Ct values (number of cycles needed for the fluorescence to reach a specific 

threshold level of detection) were used directly in all analyses. The range of Ct values 

for each gene varied for each of the four tissues analysed (Supplementary Table 2). 

Abdominal fat and breast muscle gave more disperse Ct values than liver and thigh 

muscle. RPL32 was the most abundant gene with a mean Ct in all tissues of 21.34, B2M 

and SDHA had intermediate expression levels (mean Ct 25.83 and 25.32, respectively) 

and TBP and YWHAZ were the least abundant (mean Ct 29.51 and 28.09, respectively).  

 

2.2 Gene expression stability analysis 

The gene expression stability of candidate reference genes was evaluated by using 

different approaches. Analyses using the RefFinder integration tool demonstrated an 

overall comprehensive ranking of reference genes integrated from four different 

algorithms. The reference genes calculated on the basis of different algorithms are 

presented in Table 2 and are ranked from the most stable to the least stable genes. Based 

on the rankings from each algorithm and its stability values, the geometric mean of the 

weights of individual genes was calculated by RefFinder for an overall final ranking for 
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each individual tissue. Also, records from all samples were pooled together to analyse 

gene expression stability across the whole sample set.  

Overall, ranks obtained with the geNorm, Normfinder and Comparative Ct 

algorithms were more similar (particularly in pointing out the most stable genes) than 

rankings performed by Bestkeeper (Table 2). This is due to the fact that the first three 

algorithms use different measures of variation of Ct values while the Bestkeeper 

analysis is based on the correlation of Ct values between genes.  

The optimal number of genes that are necessary for accurate normalization was 

determined for the whole set of samples with the geNorm algorithm (Figure 1). The 

pair-wise variation of two sequential normalization factors (Vn/n+1) shows that two 

reference genes are sufficient for the calculation of the normalization factor in all tissues 

analysed, since the V2/3 values were in the range of 0.012-0.026, which is below the cut 

off value of 0.15 suggested by the developers to include an additional reference gene 

(Vandesompele et al., 2009). The low Vn/n+1 value showed that the inclusion of 

additional reference genes had no significant effect on the normalisation of target genes 

and claims for the use the two most stable genes. 

 

2.3. Validation of the selection and the number of candidate genes. 

The conclusions from the analyses described above were applied to quantify the 

transcript level of a gene of interest. The expression of the fatty acid desaturase-

encoding gene SCD was measured in the same 32 samples. The relative expression 

levels of this gene have been previously evaluated in 14 chicken tissues by Dridi et al. 

(2007).   



12 
 

For each tissue, normalisation of the expression levels was performed with different 

reference gene combinations corresponding to the one or two most stably and one or 

two most unstably expressed genes according to the RefFinder ranking (Table 2). The 

relative values obtained (Figure 2) agree with the expression of this gene reported in the 

literature where, in chickens, liver and fat express higher SCD levels than breast muscle 

(Dridi et al., 2007). Estimated expression in thigh was higher in the latter than with our 

data. Using only the most stable gene or the geometric mean of the two most stable to 

normalise the data did not change the relative levels between tissues (Figure 2). Even 

the geometric mean of the two most unstable genes was able to produce similar results. 

In contrast, using only the worst performing gene in each tissue changed the tissue 

expression profile altogether (Figure 2). In all tissues, there was a clear increase in the 

dispersion of data with the use of the most unstable reference gene. 

 

Discussion 

In order to select the most suitable reference for gene expression normalisation by real-

time qPCR in chicken we analysed several tissues related to growth and fat deposition, 

including two muscles (pectoralis major and biceps femoris), liver and abdominal fat. 

The two muscles were selected as representative of quality cuts in the chicken (breast 

and thigh). Moreover, in chicken, pectoralis major is a particularly lean muscle, while 

biceps femoris is one of the fattest muscles (1.23% and 5.08% of intramuscular fat/ 

fresh meat, respectively; (Novello et al., 2009)). Therefore, they represent extremes in 

term of fat deposition events in muscle. 

Case by case validation and the use of at least two validated reference genes involved in 

distinct cellular functions has been proposed by different studies, since no single gene 

can act as a universal reference. Therefore, five potential reference genes involved in 
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different biological roles, such as cytoskeleton structure (B2M), ribosomal complexes 

(RPL32), basal transcription (TBP), signal transduction (YWHAZ) and the citric acid 

cycle (SDHA), were assessed using several statistical approaches for the normalization 

of data. 

The systematic validation of candidate genes demonstrated that none of them performed 

consistently well for all sample types and that the stability of the genes varied according 

to the tissue analysed (Table 2). Overall, from the different statistical algorithms used, 

geNorm, NormFinder and the comparative Ct method generated similar reference gene 

rankings, while BestKeepers gave slightly different results. It is now widely established 

that normalising against one single reference gene is clearly insufficient to account for 

all the small change in sample processing, particularly when comparing across tissues or 

treatments. Therefore, the use of two or more normalising genes is highly 

recommended. Is our case, the stepwise variation analysis performed with geNorm 

suggests that two reference genes are enough to normalise our data as including 

additional reference genes does not improve the variation coefficient and does not add a 

substantial contribution to the normalisation factor.  

According to the comprehensive ranking provided by RefFinder, YWHAZ was the most 

stably expressed gene in the two muscles analysed and in liver. TBP was the second 

most stable gene in biceps femoris and liver and RPL32 was so in pectoralis major 

(Table 2). The combination B2M/RPL32 was the best option to normalise data from 

abdominal fat or across tissues. In many cases the difference between 2nd and 3rd 

position in the ranking was minimal. Therefore, other combinations including the 3rd 

classified gene are also possible. The most important outcome of reference gene 

validation studies is to be able to exclude bad performers, which would add dispersion 

to the data, as shown in our validation experiment were the expression of the SCD gene, 
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encoding for a fatty acid desaturase enzyme, was assessed with different combination of 

reference genes. Some of the variation in expression levels of the reference genes tested 

may be due to the role of the gene in specific tissues. A classical examples of this is the 

experiment performed by Barber et al. (2005). The authors tested the gene stability for 

the GAPDH gene in 72 human tissues or cell types and found up to 14-fold differences 

of expression between some of them. In our case, the role of SDHA in the oxidation of 

succinate, a substrate of the citric acid cycle, may account for the differences in 

expression levels between the tissues analysed. Also, the levels of the cytoskeleton 

protein B2M are likely to differ between tissues, according to the structure of the cells. 

Other factors affecting the stability of reference genes are disease and infection, 

developmental stage, stress and environmental factors such as diet or temperature 

(Kozera and Rapacz, 2013). Therefore, when samples differ in any of these factors, the 

candidate reference genes need to be validated first.  

In conclusion, this study is the first attempt to identify reference genes in several 

chicken tissues related to growth and fat deposition. We conclude that YWHAZ and TBP 

are the most stable genes in ms. biceps femoris and liver, YWHAZ and RPL32 in ms. 

pectoralis major and B2M and RPL32 in abdominal fat and also in expression studies 

across tissues. These selected references genes were further validated in the 

transcriptional quantification of a target gene, known to be expressed preferentially in 

chicken liver and fat, and at lower levels, in muscle. These results should be a starting 

point to analyse the level of expression of genes related to growth and fat deposition in 

chicken or even be used in validation studies from large transcriptomic and genomic 

experiments.  
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Table 1. Selection of candidate reference genes and validation gene, and sequence of primers used for the real-time quantitative PCR experiment 

 

Gene 

Symbol 
Gene Name Main function Primer Sequence 5’3’ Exon 

Amplicon 

length 

B2M beta-2 microglobulin 
Cytoskeletal protein involved in 

cell locomotion 

Fw GTGCTGGTGACCCTGGTG E1 
113 bp 

Rv CAGTTGAGGACGTTCTTGGTG E2 

RPL32 

guanine nucleotide binding 

protein (G protein), ribosomal 

protein L32 

Ribosomal protein that is a 

component of the 60S subunit 

Fw ATGGGAGCAACAAGAAGACG E3 
139 bp 

Rv TTGGAAGACACGTTGTGAGC E4 

SDHA 

succinate dehydrogenase 

complex, subunit A, 

flavoprotein (Fp) 

Involved in the oxidation of 

succinate, citric acid cycle 

Fw TCTGTCCATGGTGCTAATCG E10 
126 bp 

Rv TGGTTTAATGGAGGGGACTG E11 

TBP TATA box binding protein 

Basal transcription machinery. 

Coordinates initiation of 

transcription in core promoters 

Fw CCGGAATCATGGATCAGAAC E2 

85 bp 
Rv GGAATTCCAGGAGTCATTGC E3 

YWHAZ 

tyrosine 3-

monooxygenase/tryptophan 5-

monooxygenase activation 

protein, zeta polypeptide 

Signal transduction 
Fw TTGCTGCTGGAGATGACAAG E2 

61 bp 

Rv CTTCTTGATACGCCTGTTG E3 

SCD stearoyl-coA desaturase Fatty acid desaturase, n-9 
Fw AGGCTGACAAAGTGGTGATG E4 

137 bp 
Rv GATGGCTGGAATGAAGAAGC E5 
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Table 2. Integrated table of reference gene expression stability values as calculated by four different statistical methods. 

  BestKeeper   geNorm   NormFinder   Comparative Ct   RefFinder 

 
Gene Stab. Value 

 
Gene Stab. Value 

 
Gene Stab. Value 

 
Gene Average SD 

 
Gene Geomean 

biceps femoris 

TBP 0.957 
 

TBP 0.034 
 

TBP 0.072 
 

TBP 0.702 
 

TBP 1.000 

YWHAZ 0.944 
 

YWHAZ 0.034 
 

YWHAZ 0.115 
 

RPL32 0.770 
 

YWHAZ 1.861 

RPL32 0.938 
 

B2M 0.042 
 

RPL32 0.121 
 

YWHAZ 0.798 
 

RPL32 2.711 

SDHA 0.927 
 

RPL32 0.051 
 

B2M 0.170 
 

B2M 0.916 
 

B2M 4.472 

B2M 0.868 
 

SDHA 0.062 
 

SDHA 0.199 
 

SDHA 0.988 
 

SDHA 3.557 

               

pectoralis major 

SDHA 0.990 
 

YWHAZ 0.068 
 

YWHAZ 0.377 
 

YWHAZ 1.914 
 

YWHAZ 1.316 

RPL32 0.977 
 

B2M 0.068 
 

RPL32 0.451 
 

RPL32 2.027 
 

RPL32 2.213 

YWHAZ 0.975 
 

SDHA 0.084 
 

SDHA 0.498 
 

B2M 2.575 
 

SDHA 2.340 

TBP 0.829 
 

RPL32 0.108 
 

B2M 1.147 
 

TBP 2.752 
 

B2M 2.783 

B2M 0.765 
 

TBP 0.134 
 

TBP 1.215 
 

SDHA 5.846 
 

TBP 4.229 

               

Liver 

YWHAZ 0.953 
 

YWHAZ 0.027 
 

YWHAZ 0.155 
 

YWHAZ 0.679 
 

YWHAZ 1.000 

RPL32 0.952 
 

TBP 0.027 
 

TBP 0.167 
 

TBP 0.710 
 

TBP 1.861 

TBP 0.943 
 

SDHA 0.040 
 

RPL32 0.247 
 

RPL32 0.736 
 

RPL32 2.449 

SDHA 0.924 
 

RPL32 0.051 
 

SDHA 0.258 
 

SDHA 0.764 
 

SDHA 3.722 

B2M 0.389 
 

B2M 0.084 
 

B2M 0.419 
 

B2M 1.524 
 

B2M 4.729 

               

Abdominal Fat 

RPL32 0.947 
 

TBP 0.072 
 

YWHAZ 0.296 
 

B2M 1.374 
 

B2M 1.565 

YWHAZ 0.943 
 

B2M 0.072 
 

B2M 0.342 
 

RPL32 1.390 
 

RPL32 1.861 

B2M 0.936 
 

RPL32 0.082 
 

RPL32 0.344 
 

TBP 1.438 
 

YWHAZ 2.213 

SDHA 0.933 
 

YWHAZ 0.088 
 

TBP 0.450 
 

YWHAZ 1.523 
 

TBP 2.783 

TBP 0.908 
 

SDHA 0.101 
 

SDHA 0.559 
 

SDHA 1.929 
 

SDHA 4.472 
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All tissues 

B2M 1.630 
 

B2M 0.070 
 

RPL32 0.421 
 

RPL32 2.190 
 

RPL32 1.190 

RPL32 1.680 
 

YWHAZ 0.070 
 

B2M 0.458 
 

B2M 2.360 
 

B2M 1.410 

SDHA 2.080 
 

RPL32 0.085 
 

YWHAZ 0.490 
 

TBP 2.560 
 

SDHA 3.460 

YWHAZ 2.100 
 

SDHA 0.117 
 

TBP 0.744 
 

SDHA 2.570 
 

TBP 3.660 

TBP 2.210   TBP 0.121   SDHA 0.789   YWHAZ 3.500   YWHAZ 4.730 

. 
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Legends to Figures 

Figure 1. Determination of the optimal number of reference genes for data 

normalization according to the geNorm software. 

Pairwaise variation (Vn/n+1) analysis between the normalization factors NFn and 

NFn+1, carried out for all the samples (ALL) and in individual tissues (PM – ms. 

pectoralis major; BF – ms. biceps femoris; liver; and abdominal fat)  

 

Figure 2. Use of SCD to validate the selection of reference genes. Relative expression 

levels of SCD in muscles pectoralis major (PM), biceps femoris (BF), liver and fat. 

Data were normalised against the most stable, the least stable or the geometric mean of 

the two most stable or the two least stable genes ranked by RefFinder in each tissue. 

Data are expressed as mean and standard error of relative expression units. 
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Figure 1 
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Figure 2 
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Supplementary Table 1. Comparison of PCR efficiencies by the standard curve 

method and the RT-PCR Miner algorithm. For the standard curve method, quality 

parameters are indicated for each candidate reference gene and the PCR efficiency was 

calculated from the slope of the standard curve.  

 

 Candidate reference gene 

Standard curve B2M RPL32 SDHA TBP YWHAZ 

Slope -3.153 -3.373 -3.265 -3.261 -3.137 

R2 0.996 0.998 0.998 0.990 0.996 

PCR efficiency 107.59% 97.93% 102.45% 102.62% 108.36% 

      

RT-PCR Miner B2M RPL32 SDHA TBP YWHAZ 

PCR 
efficiency 

biceps femoris 83.30% 85.10% 85.74% 84.58% 82.83% 

pectoralis major 84.19% 85.91% 85.03% 85.07% 82.09% 

Liver 82.90% 84.72% 86.55% 84.86% 82.21% 

Abdominal Fat 84.03% 85.41% 88.88% 86.79% 81.73% 

Average – all tissues 83.61% 85.29% 86.55% 85.33% 82.22% 
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Supplementary Table 2. Mean ± SD for the Ct values obtained for each gene and 

tissue in the real-time quantitative PCR experiment. 

 

 Reference genes – Ct values 
 B2M RPL32 SDHA TBP YWHAZ 

pectoralis major 25.96±2.04 21.70±2.92 24.63±2.99 26.14±3.31 28.31±2.66 

biceps femoris 26.47±1.09 21.86±1.40 24.10±1.73 30.92±1.27 28.78±1.48 

Liver 26.04±1.01 22.17±1.53 26.75±1.46 30.30±1.26 28.50±1.24 

Abdominal Fat 23.11±2.37 19.51±2.24 25.49±3.40 27.23±2.38 25.67±2.80 

All tissues 25.83±2.16 21.34±2.33 25.32±2.59 29.51±2.69 28.09±2.54 
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Highlights 

• Reference genes are necessary to validate expression data by quantitative PCR. 

• We validated reference genes in chicken breast and thigh muscle, liver and fat. 

• Gene stability studies rule out least stable genes (worse performers).  

• Differences in the top ranking are not so critical for accurate expression analysis. 


