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Abstract 

Fruit production is relevant to the European agricultural sector. However, orchards in 

semi-arid areas of southern Europe may contain soils with constrains for tree 

development. This is the case of soils with high CaCO3 content or limiting layers at 

variable depth. To assess spatial and in-depth variation of these soil constraints, an 

apparent electrical conductivity (ECa) survey was conducted in an orchard by using a 

galvanic contact soil sensor (Veris 3100). Different soil properties were randomly 

sampled at two depths (topsoil and subsoil) in 20 different sampling points within the 

plot. ECa raster maps were obtained for shallow (0-30 cm) and deep (0-90 cm) soil 

profile depths. In addition, an inversion modelling software was used to obtain 

horizontal ECa slices corresponding to 10 cm thick soil layers from 0-10 cm to 80-90 

cm in depth. Concordance analysis of ECa slices allowed the soil profile to be 

segmented into four homogeneous horizons with different spatial conductivity pattern. 

Then, a multivariate analysis of variance (MANOVA) was key, i) to better interpret the 

specific soil properties that mainly contributed to the spatial variation of ECa (CaCO3 

and organic mater (OM) contents), and ii) to delimit the soil layer and the specific 

spatial pattern of ECa that allows potential management areas to be delineated by 

presenting the same trend in CaCO3 and OM for topsoil and subsoil simultaneously. 

Moreover, assessing 3D variation of ECa made it possible to identify different soil areas 

that, linked to previous earthworks to optimize the parcelling of the farm, are the main 

cause of spatial variability within the orchard. 
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1. Introduction 
Fruit production and quality are affected to some extent by soil properties given the 

plant-soil interaction (Pedrera-Parrilla et al., 2014; Unamunzaga et al., 2014; Khan et 

al., 2016). As soil can vary spatially and at different scales, knowledge of spatial 

patterns within the plots could help farmers to make better management decisions based 

on the delimitation of areas with different soil conditions and agronomic needs (Ping et 

al., 2005; Vitharana et al., 2008; Pedrera-Parrilla et al., 2014; Córdoba et al., 2016). 

This is particularly relevant in semi-arid fruit growing areas of southern Europe. Soils in 

these areas are characterized by a high and spatially variable content of carbonates with 

clear incidence in nutritional deficiencies and chlorosis that affect growth and the 
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normal foliar development. Accordingly, orchards usually show spatial variability in the 

canopy volume within the plot. In addition, this lack of homogeneity is particularly 

remarkable in plots that have been affected by successive earthworks over the years to 

reshape and optimize the parcelling of the farm. Fruit growers are therefore especially 

interested in locating and delimiting areas within the orchards that can be a major 

constraint for management (Fulton et al., 2011). 

 

Soil sensors for mapping the apparent soil electrical conductivity (ECa in mS/m) are 

increasingly used to understand and evaluate how soil varies spatially (Corwin and 

Lesch, 2003; Abdu et al., 2008; Fulton et al., 2011) to delineate ECa-based management 

zones (Moral et al., 2010; Peralta and Costa, 2013). At present, it begins to be applied as 

a key sensing system in the framework of precision fruticulture (Käthner and Zude-

Sasse, 2015). As ECa varies on a similar spatial scale as many soil physico-chemical 

properties (Sudduth et al., 2003; Carroll and Oliver, 2005), these soil monitoring 

systems have been widely accepted. Specifically, good correlations with soil salinity, 

soil water content and soil texture have been widely documented (Corwin and Lesch, 

2005; Heil and Schmidhalter, 2012). Even, other soil properties affecting conductivity 

may be the organic C (Sudduth et al., 2003; Martinez et al., 2009), the cation exchange 

capacity (Sudduth et al., 2005) and the CaCO3 content (Kühn et al., 2009). However, 

despite these good predictive characteristics, there are few studies that refer the use of 

such sensors in horticulture and, more specifically, in fruit orchards located in 

Mediterranean latitudes. One reason could be the small size of many fruit orchards. This 

induces farmers to think that tree plantations are rather homogeneous, and spatial 

variability is not enough to justify investing in this technology. By contrast, Käthner and 

Zude-Sasse (2015) show that even in small orchards there may be differences in soil 

properties that relate to tree growth and fruit size.  Two soil sensing systems are 

commonly used in agriculture (Corwin and Lesch, 2005). In both cases (galvanic 

contact with the soil and electromagnetic induction), sensors measure the ECa on a soil 

volume basis including both topsoil and subsoil. This is very interesting since soil 

influences fruit trees at least to the depth covered by the roots, and ECa measurements 

should cover the same depth. Depending on the system, soil sensors provide with 

several electrical signals corresponding to several explored depths. When two signals 

are provided, they are known as shallow and deep ECa, and may correspond to the 

topsoil and whole profile depending on the sensor range. Farmers can get maps of both 

signals to evaluate the spatial variation of ECa, and indirectly the spatial pattern of soil 

related properties. Moreover, by overlapping maps they can also assess whether the soil 

is uniform or varies in depth. The problem occurs when the interest is to determine 

exact depths at which changes in the soil profile are produced (e.g. petrocalcic horizons) 

using such averaging procedures that encompass all or part of the soil profile (Heege, 

2013). 

 

Mapping the thickness or depth to a contrasting textural layer using ECa has been also 

referenced in several studies to detect clay horizons (Doolittle et al., 1994; Saey et al., 

2009), or estimate topsoil depth explored by roots (Khan et al., 2016). Depth estimates 

may be based on empirical equations (using a single ECa signal that integrates the 

relative contribution of soil at each depth) or by combining data from multiple ECa 

sensors in both two- and three-layer models (Sudduth et al., 2010, 2013). 

Electromagnetic conductivity imaging (EMCI) of soil is another option that has been 
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recently investigated (Triantafilis et al., 2013). Combining conductivity data and an 

inversion modelling software, a two-dimensional model of the ECa can be generated to 

assess soil variation (i.e. horizons) at discrete depth intervals (Triantafilis and Monteiro 

Santos, 2013). Researchers can take advantage of this additional information regarding 

the signal variation probably caused by layers of different thickness and composition. In 

short, soil properties sampled at varying depths may be better interpreted if a model 

indicating the variation of ECa with soil depth is available. 

 

The main objective of the present research was to analyse the capacity of a galvanic 

contact soil sensor (Veris 3100) to be used as a diagnostic tool in fruit growing areas 

with high calcium carbonate content, and plots affected by previous parcelling works. 

Special attention was devoted to assess the spatial variability of physico-chemical soil 

properties to properly define differential management zones within an orchard. For that, 

we focused our research on i) evaluating the sensing system and its signal mapping, ii) 

inverting the ECa signal to obtain electrical imaging of ECa variation with soil profile, 

and iii) applying not conventional statistical methods i.e. multivariate analysis of 

variance (MANOVA) for a better interpretation of ECa and soil data. 

 

2. Materials and methods 

2.1. Study area 

The study was carried out at the IRTA Experimental Station (Lon. 0.392017, Lat. 

41.654413, Datum WGS84), located in Gimenells, 24 km west from Lleida (Catalonia, 

Spain). The research was focused on a 0.65 ha plot that was planted in 2011 with peach 

trees (Prunus persica L. Stokes var. platycarpa) according to a 5 x 2.80 m plantation 

pattern (Fig. 1). Soil was classified as Petrocalcic Calcixerept (Soil Survey Staff, 2014), 

and it is a well-drained soil without salinity problems. The climate, typical of semi-arid 

areas of the Mediterranean region, is characterized by strong seasonal temperature 

variations (cold winters and hot summers), and an annual precipitation that is usually 

below 400 mm, although with significant interannual variability. 

 

However, the most important feature of the plot was the presence of a petrocalcic 

horizon at a variable depth from 40 cm to 80 cm. This spatial variation in depth could 

be explained by the successive earthworks made in recent years in order to improve or 

adapt the parcelling of the farm. Probably, the petrocalcic layer was broken over time 

due to soil tillage and now appears even at shallow depths in certain areas. In fact, the 

history of transformation and land uses of this plot has been relatively complex as 

shown in Figure 1. Since 1946, when the Experimental Station was created, the plot has 

been cultivated with different crops and was modified in shape and size in several 

occasions (at least, the plot undergone a minimum of four major transformations in 

recent years, Fig. 1). 
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Fig. 1 Location of the study area and recent orthophoto (2015) of the experimental 

peach orchard (top). Other pictures: ancient orthophotos of the same area corresponding 

to different years since 1946. 

 

2.2. Soil sampling 
A simple random soil sampling was carried out in 20 different points within the plot 

(Fig. 2). Soil was sampled on March 15th, 2015. Samples were collected with the aid of 

a manual auger-hole at three different depths (0-30, 30-60, 60-90 cm). It is necessary to 

clarify that only in 4 of these sampling points it was possible to take a sample of the 

deepest layer, since the soil was shallow at most of the sampled sites. Sample locations 

were also georeferenced with submetric precision using a Trimble GPS Geo XH 

receiver and SBAS differential correction based on EGNOS. Soil samples were air-

dried and sieved, and different physicochemical properties were analysed in laboratory 

according to the standard procedures. Specifically, data were obtained on the following 

properties: calcium carbonate content (CaCO3), cation exchange capacity (CEC), 

electrical conductivity in a 1:5 soil-water solution (EC1:5), organic matter (OM), pH 

measured in a 1:2.5 soil-water ratio, soil texture, total nitrogen (TN) in soil, and water 

holding capacity (WHC). 
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Fig. 2 ECa maps obtained by spatial interpolation and random soil sampling points 

within the plot. A) shallow ECa (0-30 cm). B) deep ECa (0-90 cm). 

 

In addition to manual soil sampling, an ECa survey was conducted by using the Soil EC 

Surveyor Veris 3100 (Veris Technologies, Inc., Salina, KS, USA). The Veris 3100 

implement is a simple and effective tool to acquire on-the-go information on soil bulk 

electrical conductivity for subsequent mapping. Its advantage lies in using two electrical 

arrays that allows ECa readings to be obtained at two different soil depths 

simultaneously and free of metal interference. Equipped with six heavy-duty coulter-

electrodes, a pair of electrodes inject electrical current into the soil while the other two 

pairs measure the voltage drop. The penetration of the electrical current into the soil 

and, by extension, the volume of soil explored increases as the inter-electrode spacing 

increases. In our case, the array configuration allowed 0-30 cm (shallow ECa lecture) 

and 0-90 cm (deep ECa lecture) soil depths to be explored. 

 

The ECa survey was carried out on March 23rd, 2015. For that, the Veris 3100 system 

was pulled by a 4-wheel drive vehicle passing along all the alleyways of the peach 

orchard. As tree rows were spaced 5 m, parallel ECa measurements were spaced this 

same distance. On the other hand, the soil sensor was connected to a Trimble 

AgGPS332 receiver for georeferencing purposes, and SBAS differential correction 

based on EGNOS was used. Regarding the spatial sampling resolution, data were 

recorded every second providing a total of 644 georeferenced ECa readings within the 

orchard (990 sampling points per hectare). 

 

2.3. Apparent electrical conductivity maps and quasi-3D inversion modelling 

 

Both ECa values (shallow and deep) were mapped by ordinary kriging. Maps were 

obtained after checking the normality of the acquired data and having removed extreme 

outliers from the analysis. Regarding the latter, ECa values lower than          or 

greater than          were not considered in the spatial interpolation (   and    

were the first and third quartiles, and     was the interquartile range of the 

distribution). ArcMap 10.4.1 Geostatistical Analyst (Environmental Systems Research 

Institute, Redlands, CA, USA) was then used to finally interpolate shallow and deep 

ECa values by kriging on a 1 m grid. Geometric anisotropy along peach rows was taken 

into account when adjusting the experimental variograms (exponential model for the 
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shallow ECa, and stable model for the deep ECa). A strong spatial variation was also 

found on both maps (Fig. 2) (Cambardella et al., 1994).  

 

In addition to raster ECa maps (0-30 cm and 0-90 cm depth profile), inversion 

modelling was applied in order to estimate ECa values at different specific soil depths. 

The software invVERIS 1.1 (EMTOMO Lda, Lisbon, Portugal) was used for this 

purpose. Specifically, invVERIS enables the inversion of ECa data acquired by galvanic 

contact soil sensors such as Veris 3100. The inversion procedure consists in a 1-

dimensional laterally constrained technique to evaluate the ECa for a given soil transect 

(Quasi-2D inversion). The technique of signal inversion is based on a nonlinear, 

smoothness-constrained algorithm described by Monteiro Santos et al. (2011) and 

Monteiro Santos (2004). As the Veris 3100 sensor was used passing along all the 

alleyways of the orchard (different transects), the possibility of inversion in each of 

these profiles makes it possible to obtain a soil layer model from the set of 1D models 

distributed according to the locations of the ECa measurement sites. The program 

finally allows horizontal slices (maps) of soil layers of the same thickness to be 

displayed at selected depths and covering the whole area of the plot (quasi-3D inversion 

modelling). In our case, we chose to model and visualize 9 layers of ECa of 10 cm in 

thickness from 0-10 cm to 80-90 cm in depth. 

 

2.4. Data analysis 

2.4.1. Clustering and map comparison 

A cluster analysis was performed to classify ECa maps. Once the shallow and deep ECa 

maps were created, each map was clustered into two classes (low and high ECa) using 

the Iterative Self-Organizing Data Analysis Technique (ISODATA) implemented in 

ArcGIS 10.4.1 (IsoCluster function). The procedure is based on an iterative algorithm 

that begins assigning an arbitrary mean to each class. Pixels are then successively 

reassigned based on minimizing the Euclidean distance of each pixel to the mean value 

of the class. In each iteration, class means are recalculated and pixels are reallocated 

until the last iteration is reached, or the number of pixels that change from one class to 

another does not exceed a certain threshold (Guastaferro et al., 2010). Classified 

conductivity maps were then used to assess whether the soil was significantly different 

depending on the ECa in each area. Multivariate analysis of variance (MANOVA) of 

the sampled soil properties according to conductivity classes (high and low) was used to 

evaluate this effect. 

 

This same procedure was repeated for the horizontal slices (maps) resulting from the 

quasi-3D inversion modelling of ECa values. However, to avoid redundant analysis, 

maps from the 9 inverted ECa layers were first compared with each other using the Map 

Comparison Kit (MCK) software (Visser & de Nijs, 2006). The degree of similarity 

between maps was quantified by the Kappa coefficient (Cohen, 1960) and, as a result of 

the comparison, the nine layers previously established were finally grouped into four 

different homogeneous horizons.  

 

2.4.2. Multivariate analysis of variance (MANOVA) 

Separate analysis of each sampled soil property according to different levels of ECa 

(ANOVA) may lead to misleading and inconsistent results. In fact, ECa reflects the 

combined effect of soil properties as a whole, and delimitation of areas within the plot 
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based on ECa maps should be checked from a multivariate approach. To detect the 

specific soil properties that mainly contributed to the spatial variation of ECa, a 

multivariate analysis of variance (MANOVA) was performed. The method is slightly 

more complex and scarcerly used in soil science (Taylor and Whelan, 2011). However, 

it has proved to be an effective technique to delineate differential management zones in 

precision agriculture (Ping et al., 2005). In our case, the effect of ECa was then 

evaluated by performing a MANOVA using soil sampled properties as dependent 

variables and classes of ECa (high and low) as the factor under analysis. 

 

The problem arises when a significant result must be interpreted, since there is no 

unanimity as to the most appropriate post hoc procedures to be used (Warne, 2014). In 

this research, a descriptive discriminant analysis (DDA) was used to interpret 

significant MANOVAs (Thomas, 1992). DDA is a statistical procedure that, in our case, 

provided a linear combination of the soil properties (discriminant function) that 

managed to separate the two classes of ECa in a meaningful way. Standardized 

coefficients of the discriminant function and structure coefficients were used for 

interpretation. Standardized discriminant function coefficients (SDFCs) were indicative 

of the contribution of each soil variable to the discriminant function, whereas the 

structure coefficients (SCs) were the correlations between each observed variable and 

the discriminant function scores. The most important soil variables affecting the 

differential ECa were finally identified through the so-called parallel discriminant ratio 

coefficients (parallel DRCs) by multiplying SDFCs by the corresponding SCs. So 

parallel DRCs were used to assess non-redundant soil variables contributing to 

discriminate two types of soil in terms of ECa. 

 

3. Results and discussion 

3.1. Soil characterization 

Table 1 shows the main descriptive statistics for the soil properties. Only soil properties 

analysed at both depths (0-30 cm and 30-60 cm) were included in the analysis (total 

nitrogen was excluded for this reason). Soils in the study plot were found to have an 

average depth of about 60 cm, basically limited by the petrocalcic horizon. As the 

standard deviation was 18 cm, soil depth showed a considerable spatial variability 

within the plot (CV of 30%). Other soil properties that showed spatial variability were 

the electrical conductivity at the two sampling depths and, with much lower incidence, 

the water holding capacity at the deepest layer. Regarding the latter, average WHC did 

not vary significantly between soil and subsoil, and a rather low value of 64.23 mm was 

obtained as an average for the whole soil profile. Carbonates also varied spatially (CV 

of 20%), but the most significant was the high value of the carbonates content in the soil 

(27% at the top layer and 33% at the bottom layer). Probably, the observed enrichment 

of CaCO3 in the second layer (6% higher) could be explained by the near presence of 

the petrocalcic horizon and its breakage over the years by tillage operations. Derived 

from this, a moderately basic pH was expected in the soil. Finally, the organic matter 

was lower in the subsoil but at the expense of a strong spatial variation. The soil could 

be considered as well-drained, not saline, and with a loam soil texture. No other 

consideration was noteworthy. 
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Table 1 Soil properties for two sampling depths (N=20 sampling points) 

Soil property Mean 
Standard 

deviation 

CV 

(%) 
Minimum Maximum 

Soil depth* (cm) 59.75 17.91 29.99 42.0 90.0 

Sampling depth 0- 30 cm 
pH 7.92 0.10 1.26 7.90 8.10 

EC1:5 (dS/m) 0.93 0.51 54.83 0.23 1.84 

CaCO3 (%) 26.95 5.61 20.81 16.27 35.32 

CEC (meq/100 g) 13.97 1.02 7.30 11.50 15.90 

OM (%) 2.70 0.64 23.70 0.89 3.93 

Sand (%) 42.45 3.66 8.62 37.60 54.40 

Silt (%) 30.38 3.38 11.12 18.30 35.60 

Clay (%) 27.18 1.99 7.32 23.80 31.50 

WHC (%) 10.95 0.94 8.58 9.00 13.00 

Sampling depth 30- 60 cm 
pH 7.57 0.12 1.58 7.30 7.80 

EC1:5 (dS/m) 1.92 0.96 50.00 0.50 3.46 

CaCO3 (%) 33.04 6.00 18.15 19.29 41.71 

CEC (meq/100 g) 11.61 1.47 12.66 8.96 14.10 

OM (%) 1.22 0.62 50.81 0.16 3.24 

Sand (%) 42.12 4.50 10.68 35.80 53.10 

Silt (%) 31.22 6.22 19.92 14.20 39.90 

Clay (%) 26.21 3.15 12.01 19.40 31.10 

WHC (%) 10.55 1.63 15.44 8.00 14.00 

*Soil depth refers to the depth needed to reach the petrocalcic horizon. 

 

3.2. Soil horizons delimited by ECa patterns at different depths 

Figure 3 shows the interpolated maps of ECa (shallow and deep) and the corresponding 

maps where ECa was classified into two classes (high ECa and low ECa). Comparing 

the shallow and deep ECa maps (Fig. 3), one realizes that the pattern of spatial variation 

is quite similar. In theory, this was indicative of a uniform soil in depth. However, 

classified maps are not so similar (Fig. 3), occupying the high conductivity class a 

larger area (59% of the plot area) when the plot was classified based on the deep signal 

compared to 38% for the case of shallow signal. 

 

To assess in more detail the variation of ECa within depth, inversion modelling 

software invVERIS 1.1 was used to obtain electrical conductivity maps (ECM) or 

horizontal slices every 10 cm in depth. In this respect, nine different maps were 

obtained corresponding to depths from 0-10 cm to 80-90 cm (Fig. 4). Maps 

corresponding to the topsoil layers (0-30 cm in depth) showed higher ECa values and 

greater spatial variability than the deeper layers (CV of 45% for layer 0-10 cm was 

reduced to CV of 15% for layer 80-90 cm). The attenuation of the conductivity signal 

was therefore evident, hindering differentiation of soils although there was considerable 

spatial variation in certain soil properties at greater depth (Table 1). This same result 

was observed by Sudduth et al. (2005). 
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Fig. 3 A) Shallow interpolated ECa map (left), and shallow clustered map with low and 

high ECa classes (right). B) Deep interpolated ECa map (left), and deep clustered map 

with low and high ECa classes (right). 

 

 

 
Fig. 4 Horizontal slices 10 cm thick at different depths obtained by inversion of the ECa 

values with invVERIS 1.1. 

  

Concordance analysis between ECa maps allowed the horizontal layers of 10 cm to be 

grouped according to 4 soil horizons that were homogeneous but different from each 

other in both signal intensity and spatial pattern. Only layers with high spatial 

agreement were grouped (Kappa coefficient greater than 0.6, data not shown; Landis 
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and Koch, 1977), resulting in a soil profile that could be segmented into (i) a first 

horizon occupying the first 10 cm (0 to 10 cm), (ii) a second horizon of the same 

thickness, from 10 to 20 cm), (iii) a third horizon with a greater thickness to a depth of 

50 cm (20 to 50 cm), and (iv) a deeper and homogeneous layer up to 90 cm (50-90 cm). 

The representative conductivity map of each horizon was classified into two ECa 

classes (high and low) following the same procedure as for the original maps (Fig. 5). 

Multivariate analysis of variance (MANOVA) of soil properties was then performed for 

each of the identified soil horizons (Table 2). 

 

 
Fig. 5 Clustered maps (high and low ECa) for the four soil horizons delimited by 

concordance analysis. 

 

3.3. Soil properties influencing the spatial and in-depth variation of the ECa 

A series of multivariate analysis of variance (MANOVAs) were performed to determine 

specific soil properties mainly linked to the spatial variation of ECa measured with the 

Veris 3100 sensor. Results are shown in Table 2. For topsoil properties (0-30 cm), pH, 

CaCO3 and organic matter (OM) were the properties that contributed most to the spatial 

variation of the ECa. This result was somehow unexpected since, besides carbonates, 

organic matter appeared as a soil property that influenced the ECa signal. Descriptive 

discriminant analysis (DDA) highlighted the importance of OM through the so-called 

parallel discriminant ratio coefficient (parallel DRC), that indicates the relative 

contribution of each soil property in the canonical (discriminant) function. Even more, 

the influence of OM on the ECa was evident for both the shallow values and for the 

discretized values for the first three soil horizons (Table 2). Among the latter, 

discriminant function of soil properties corresponding to the 10-20 cm soil layer was 

able to better differentiate low and high electrical conductivity. However, good 

discrimination between low and high signals was also achieved by using the soil layer 

conductivity corresponding to a depth of 20-50 cm. This soil classification was 
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especially interesting given the strong contribution of both CaCO3 and OM in the 

corresponding discriminant function (Table 2). On the other hand, contribution of water 

holding capacity (WHC) did not seem to significantly influence ECa, and the original 

idea that water holding capacity could be behind the spatial variation of ECa was no 

longer supported. 

 

A similar trend occurred for the subsoil (30-60 cm) and, again, CaCO3 and OM were the 

properties that contributed most to explain the variability of ECa. Discriminant function 

for the deeper layer (50-90 cm) provided the best differentiation between low and high 

electrical conductivity. But, as with topsoil, it was necessary to classify the ECa for a 

boundary horizon between topsoil and subsoil (20-50 cm) to detect such differences 

with almost exclusive contribution of CaCO3 and OM (Table 2). Another possibility 

would be to focus the deep soil management on the carbonates content and, in this case, 

areas could be delimited using the deep ECa. The relationship between soil variables 

and ECa coincided with that reported by other authors. Thus, there was an increase in 

electric conductivity with increasing carbonates content (Kühn et al., 2009), while the 

effect of organic matter was just the opposite (Moral et al., 2010). 

 

Spatial and in-depth variation of CaCO3 and OM made it possible to propose a site-

specific management within the plot based on applying chelates and organic 

amendments in a differentiated way. Two basic issues need to be addressed. Should the 

plot be managed based on the differences between topsoil and subsoil, or is it more 

advisable to consider the entire profile globally? And, faced with the delineation of 

potential management zones, should areas be defined using the shallow ECa, the deep 

ECa, or the discretized ECa for a particular soil layer? MANOVA provided very 

interesting information to assist in such decision making process (Table 2). First, 

differential management should primarily focus on the CaCO3 spatial distribution 

because this property clearly influenced the ECa for the entire soil profile. The 

petrocalcic horizon would probably be behind this spatial variation as a result of 

previous parcelling and earthworks in recent years. Secondly, the delimitation of areas 

of low and high conductivity by respectively matching low and high CaCO3 contents for 

both topsoil and subsoil would be ideal for differential management. The soil layer 

covering a depth between 20 and 50 cm has shown a spatial pattern of electrical 

conductivity that meets this requirement. OM was also important, and its spatial 

variation in the topsoil also seems to be linked to the variation in the subsoil in view of 

discriminant functions obtained for the soil layer from 20 to 50 cm depth (Table 2). 

Probably, the boundary condition between topsoil and subsoil of this intermediate layer 

allowed to use it as representative of the whole soil profile. Contrary to the post hoc 

interpretation of MANOVAs, separate ANOVAs for each of the most relevant soil 

properties led to somewhat different results (Table 3). Specifically, spatial pattern of 

ECa for this horizon (20 cm to 50 cm) would only be justified to delimit potential zones 

of topsoil management. However, this same ECa pattern can be applied to the subsoil 

according to the MANOVA results, highlighting the need for a multivariate approach 

when deciding on potential management areas. 
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Table 2 Descriptive discriminant analysis (DDA) of soil properties affecting ECa for 

different soil depths 
ECa classified 

map 

Discriminant 

analysis (DDA) 

Soil properties sampled in the topsoil (0-30 cm) 

 

 

 

pH EC1:5 CaCO3 OM CEC Clay Sand WHC 

 SDFC 1.02 0.26 -1.04 1.19 -0.32 0.45 1.08 -0.03 

Shallow ECa SC 0.37 -0.23 -0.36 0.23 0.06 -0.09 0.08 -0.20 

 Parallel DRC 0.38 -0.06 0.37 0.27 -0.02 -0.04 0.09 0.01 

 SDFC 1.21 1.85 1.26 -1.60 0.35 -0.01 0.27 0.19 

Depth 0-10 cm SC -0.35 0.50 0.22 -0.14 0.05 0.12 -0.13 0.16 

 Parallel DRC -0.43 0.93 0.27 0.22 0.02 0.00 -0.04 0.03 

 SDFC 0.57 -0.66 -1.42 1.68 -0.28 0.74 1.60 -0.11 

Depth 10-20 cm SC 0.27 -0.22 -0.25 0.15 0.03 -0.07 0.09 -0.15 

 Parallel DRC 0.15 0.15 0.36 0.25 -0.01 -0.05 0.14 0.02 

 SDFC 1.21 1.36 -1.14 1.83 -1.77 - -0.21 0.13 

Depth 20-50 cm SC 0.27 -0.12 -0.46 0.26 0.08 - 0.06 -0.19 

 Parallel DRC 0.33 -0.16 0.53 0.48 -0.13 - -0.01 -0.02 

ECa classified 

map 

Discriminant 

analysis (DDA) 

Soil properties sampled in the subsoil (30-60 cm) 

 

  pH EC1:5 CaCO3 OM CEC Clay Sand WHC 

 SDFC 0.97 0.35 1.56 -0.02 - - -1.42 0.69 

Deep ECa SC -0.26 0.35 0.42 -0.09 - - -0.21 0.26 

 Parallel DRC -0.26 0.12 0.65 0.00 - - 0.30 0.18 

 SDFC 1.19 - 2.20 -0.87 - - - - 

Depth 20-50 cm SC 0.04 - 0.26 -0.45 - - - - 

 Parallel DRC 0.04 - 0.58 0.39 - - - - 

 SDFC - 0.48 1.04 -0.48 0.66 -1.36 -0.75 0.58 

Depth 50-90 cm SC - 0.37 0.38 -0.38 0.02 -0.05 -0.07 0.18 

 Parallel DRC - 0.18 0.40 0.18 0.01 0.07 0.06 0.10 

Hyphens indicate variables that were removed to obtain significant discriminant functions. Parallel DRC 

in bold indicates soil properties with greater contribution in the discriminant function from MANOVA. 

SDFC: standardized discriminant function coefficient; SC: structure coefficient; parallel DRC: parallel 

discriminant ratio coefficient.  EC1:5: electrical conductivity in a 1:5 soil-water solution (dS/m); CaCO3 

(%); OM: organic matter content (%); CEC: cation exchange capacity (meq/100 g); Clay (%); Sand (%); 

WHC: water holding capacity (%). 

 

Table 3 Relevant soil properties with significant differences according to ECa classes 
ECa classified 

map ECa classes 

Soil properties sampled (0-30 cm) 

 

 

 

pH EC1:5 CaCO3 OM 

Shallow ECa Low 7.98 - 25.09 - 

 High 7.84 - 31.73 - 

Depth 0-10 cm Low 7.98 0.69 - - 

 High 7.83 1.52 - - 

Depth 10-20 cm Low 7.98 0.70 25.09 - 

 High 7.83 1.40 31.11 - 

Depth 20-50 cm Low 7.95 - 24.01 2.78 

 High 7.85 - 31.87 2.22 
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ECa classified 

map ECa classes 

Soil properties sampled (30-60 cm) 

 

  pH EC1:5 CaCO3 OM 

Deep ECa Low - - 29.28 - 

 High - - 35.47 - 

Depth 20-50 cm Low - - - - 

 High - - - - 

Depth 50-90 cm Low - 1.29 29.05 1.57 

 High - 2.26 35.09 0.93 

Hyphens indicate variables that did not show significant differences (p<0.05) in the corresponding 

ANOVAs. EC1:5: electrical conductivity in a 1:5 soil-water solution (dS/m); CaCO3 (%); OM: organic 

matter content (%). CEC, clay, sand and WHC are not shown in the table, because they were not 

significantly different in any of the soil layers. 

 
3.4. Spatial pattern of the ECa as a result of previous parcelling: consequences for 

management 

As previously mentioned, the plot under study had been subjected to different parcelling 

processes in recent decades. Figure 1 shows the evolution from 1946. By overlapping 

the ECa map derived from the Veris 3100 sensor readings (deep signal) (Fig. 6), it is 

interesting to observe how it clearly reproduces the edges and divisions of previous 

plots. Depending on the use and the parent material, the soil of the present plot is the 

result of all these transformations affecting productivity and causing the current spatial 

variability. From this point of view, the use of combined information from soil sensors 

and historical orthophotos becomes an interesting tool for better soil interpretation and 

better diagnosis of management actions to be performed. 

 

As showed in Fig. 6, the two transverse subdivisions (paths) in 1946, one of which was 

still in place in 2005, are relatively marked as areas of highest conductivity in the ECa 

cluster map for the reference horizon corresponding to 20-50 cm depth (Fig. 5). On the 

other hand, a more compact area with also high ECa values appears as a consequence of 

incorporating a piece from another different plot in 1986. This area has remained 

different from the rest of the plot until today (perfectly marked on the cluster map), and 

corresponds to the area where problems commonly due to high carbonates contents are 

done. Our management proposal for this plot could then be established making use of 

the classified map for the aforementioned reference horizon, that matches the joint 

differential needs for topsoil and subsoil. Therefore, in areas with potential chlorosis 

and soil fertility problems (high ECa), the farmer could implement a fertilization plan 

by adding chelates and organic fertilizers to correct these nutritional imbalances more 

optimally. 

 

https://doi.org/10.1016/j.geoderma.2018.01.008


POSTPRINT of the article: Uribeetxebarria, A., Arnó, J., Escolà, A., Martínez-Casasnovas J.A. 
2018. Apparent electrical conductivity and multivariate analysis of soil properties to assess 
soil constraints in orchards affected by previous parcelling. Geoderma. 319, 185-193.   
https://doi.org/10.1016/j.geoderma.2018.01.008 

  

14 
 

 
Fig. 6 Evolution of historical parcelling until 2015 and current design. The overlapping 

of the deep ECa map shows where the transformations occurred. 

 

4. Conclusions 

The acquisition and mapping of apparent electrical conductivity (ECa) allowed areas 

with potential chlorosis problems to be delimited in the study plot. These areas were 

characterized by high CaCO3 content due to the presence of a petrocalcic horizon at 

variable depth. On the other hand, parcelling carried out over the years has been 

revealed as a key factor in understanding the soil spatial variability that is then 

reproduced by the electrical conductivity sensor. Since carbonates and organic matter 

are behind much of the variability detected by the conductivity signal, site-specific 

organic amendment and chelate application is a management option to be taken into 

account. Regarding the information analysis procedure, ECa analysis should not focus 

exclusively on shallow and deep signals. Signal inversion allowing ECa measures to be 

estimated in depth at discrete intervals makes it possible to divide the soil profile into 

homogeneous horizons by comparing classified maps of ECa at different depths. Then, 

multivariate analysis of variance (MANOVA) based on the previous maps offers 

interesting outputs in agronomy because, i) the overall relationship between ECa and 

soil properties is better interpreted, and ii) potential management zones can be validated 

knowing in detail the specific causes behind the variation of ECa, in our case, both 

CaCO3 and organic matter contents. 
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