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Abstract. To characterize when a nilpotent singular point of an
analytic differential system is a center is of particular interest, first
for the problem of distinguishing between a focus and a center, and
after for studying the bifurcation of limit cycles from it or from
its period annulus. We give an effective algorithm in the search of
necessary conditions for detecting nilpotent centers based in recent
developments. Moreover we survey the last results on this problem
and illustrate our approach by means of examples.

1. Introduction and statement of the main results

This work deals mainly with the distinction between a center and a
focus in the case of a nilpotent singular point, the called center problem
for nilpotent singular points. A related problem is to characterize when
there exists an analytic first integral in a neighborhood of a singular
point which is a center, see [10]. Let p ∈ R2 be a singular point of
a differential system in R2. We recall that p is a center if there is a
neighborhood U of p such that all the orbits of U \ {p} are periodic,
and p is a focus if there is a neighborhood U of p such that all the
orbits of U \ {p} spiral either in forward or in backward time to p.

Assume that p is a center that we can suppose at the origin of co-
ordinates. After a linear change of variables and a scaling of the time
variable (if necessary), the system can be written in one of the following
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three forms:

ẋ = −y + F1(x, y), ẏ = x + F2(x, y);(1)

ẋ = y + F1(x, y), ẏ = F2(x, y);(2)

ẋ = F1(x, y), ẏ = F2(x, y);(3)

where F1 and F2 are real analytic functions without constant and linear
terms, defined in a neighborhood of the origin, and the dot denotes
derivative with respect to the independent variable t, usually called
the time. The center is called of linear type (also bad called non–
degenerate), nilpotent or degenerate, if it can be written after an affine
change of variables and a scaling of time as system (1), (2) or (3),
respectively.

The characterization of the linear type centers is well–known in terms
of the existence of an analytic first integral, see [27, 31]. For these
type of centers it is also possible to use the Poincaré return map to
characterizes the existence of a center, see for instance [6]. The im-
plementation of an algorithm for detecting the linear centers, based in
the existence of an analytic first integral or using the Poincaré return
map, is straightforward, but the huge amount of computations which
usually are necessary becomes this problem in general computationally
intractable, see [21] and references therein.

The characterization of nilpotent centers based on the existence of an
analytic first integral is not possible because nilpotent and degenerate
centers do not have, in general, a local analytic first integral defined
in a neighborhood of the center, see [10, 11, 15, 20, 29, 30]. There are
three different methods for detecting nilpotent centers.

First, the characterization of nilpotent centers is possible with the
Poincaré return map using the Lyapunov generalized coordinates x =
rCsθ and y = rnSnθ, see [2, 3, 6].

Second, a different method for obtaining the Poincaré–Lyapunov
constants or the generalized Lyapunov constants is using normal form
theory. This theory can be applied to linear type and nilpotent centers,
see [1, 4, 12].

Finally, another approach is using the generalized polar coordinates
x = r cos θ and y = rn sin θ, see [24, 25]. Using these generalized po-
lar coordinates the generalized Lyapunov constants appear computing
integrals of trigonometric functions which in general are not easy to
compute. Using this technique some applications to the bifurcation
of limit cycles can be found in [22]. A generalization of these polar
coordinates given by x = rm cos θ and y = rn sin θ is used in [33, 34] to
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study nilpotent and also degenerate centers. In this case, for instance,
system (3) becomes the following differential equation

r′ =
dr

dθ
=

r(rnF1(r cos θ, r sin θ) cos θ + rmF2(r cos θ, r sin θ) sin θ)

mrmF2(r cos θ, r sin θ) cos θ − nrnF1(r cos θ, r sin θ) sin θ
.

Now it is considered the function

F (θ) = lim
r→0

r′

r
.

The idea is to chose n and m in order that this function F (θ) does not
vanish for any value of θ. In this case the origin is monodromic and we
can use the classical Bautin method to compute the focal values, see [8]
and also [15, 17]. Moreover in [33, 34] the author study some families
of systems which can exhibit nilpotent centers but he does not provide
the necessary algebraic conditions for having a nilpotent center. He
only provides numerical approximations of these conditions due to the
computational complexity of the method used by the author. We study
here the same systems providing necessary and in some cases sufficient
algebraic conditions.

In [9] it was proved that any nilpotent center is orbitally equivalent
to a time-reversible system (see also [28]). Taking into account that
any nilpotent and degenerate center does not have, in general, a local
analytic first integral we cannot use directly the Poincaré–Lyapunov
method (seeking for analytic first integrals) for determining the cen-
ter conditions in the case of nilpotent and degenerate singular points.
Nevertheless in [13] it is showed that essentially the Poincaré–Lyapunov
method also works to determine nilpotent centers and a subclass of an-
alytic degenerate centers, see also [17, 18]. In fact it was proved that all
the nilpotent centers are limit of linear type or non-degenerate centers.
The main result of [13] is the following theorem.

Theorem 1 (Nilpotent Center Theorem). Suppose that the origin
of the real analytic differential system (2) is a center, then there exist
analytic functions M1 and M2 without constants terms, such that the
system

(4) ẋ = y + F1(x, y) + εM1(x, y), ẏ = −εx + F2(x, y) + εM2(x, y),

has a linear type center at the origin for all ε > 0, where M1 = (x +
f) ∂f/∂y and M2 = −(x + f) ∂f/∂x − f . Here, f(x, y) is an analytic
function starting with terms of degree two in x and y.

Theorem 1 was not correctly stated in [13], and later on appeared
a correction to it in [14], but again the proof of [13] was not strictly
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correct, because in that proof it was used incorrectly an orbital equiv-
alence. More precisely, there exists an orbital equivalence, which is an
analytic transformation and a change of time, that writes any nilpotent
center as a time–reversible system, i.e. as a system invariant by the
symmetry (x, y, t) → (−x, y, −t). In the proof of [13] was not taken
into account this change of time. Therefore we believe appropriate
to give a complete proof of this useful theorem which is the base of
the algorithm for detecting nilpotent centers presented in this paper.
Theorem 1 is proved in section 2.

In summary Theorem 1 states that given an analytic vector field X
defined in a neighborhood of p ∈ R2 where p is a nilpotent center of
X , there exists an one–parameter family of analytic vector fields Xε,
with ε ≥ 0, defined in a neighborhood of pε ∈ R2 having a linear type
center at pε for ε > 0 and satisfying X0 = X and p0 = p. Moreover,
suppose that Hε(x, y) is a local analytic first integral at pε for the
vector field Xε with ε > 0. If the limit limε↘0 Hε(x, y) exists, and is
a function H(x, y) well defined in a neighborhood of p, then H(x, y)
is a local first integral (not necessary analytic) of X at p. Using this
mechanism in [13, 19] some non–continuous first integrals for nilpotent
and degenerate centers are computed.

While the problem of distinguishing between a center and a focus
is not algebraically solvable for degenerate centers (see for instance
[23, 26]), it is algebraically solvable for analytic differential systems of
the form (1) and (2), see [7]. Moreover Theorem 1 provides a new
proof of this fact for the nilpotent centers from the knowledge of the
algebraically solvability for systems of the form (1). However depending
on the method used to determine the center conditions, sometimes the
method cannot go further and determine explicitly the conditions which
must be algebraic, see for instance [3]. An algorithm to detect nilpotent
center conditions must find all the algebraic conditions that determine
a center. The algorithm does not discriminate correctly if we obtain
expressions where only numerical calculations can be used to fix the
parameters of the family in order to have a center, see for instance
[33, 34]. In this work we present an algorithm that correctly provides
the explicit algebraic conditions for having a nilpotent center of system
(2). The algorithm derived from Theorem 1 is presented in section 3.

This new algorithm improves the use of Theorem 1 presented in
[13, 14]. A key point in this improvement is that instead of working
with the linear part (y, −εx) of system (4) we shall work with the
classical linear part (y, −x) after doing a convenient rotation, and after
this change we can work with trigonometric polar coordinates.
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2. Proof of Theorem 1

Assume that the origin of system (2) is a center. Following [9] this
system is orbitally equivalent to a time–reversible system around the
origin. Therefore there exists an analytic change of variables (x, y) 7→
(u, v) of the form

(5) x = u + f(x, y), y = v + g(x, y),

where f and g are analytic functions. In the new variables the system
(2) becomes

(6) u̇ = v + F 1(u, v), v̇ = F 2(u, v),

where F 1 and F 2 are analytic functions starting with terms of second
degree in x and y; and according with [9] it exists a change of time
dt = (1 + h(u, v))dτ such that system (6) can written as

(7) u̇ = (v + F 1(u, v))(1 + h(u, v)), v̇ = F 2(u, v)(1 + h(u, v));

and this system is invariant by the symmetry (u, v, t) 7→ (−u, v, −t).

Now we consider the following perturbation of system (7)

(8) u̇ = (v +F 1(u, v))(1+h(u, v)), v̇ = −εu+F 2(u, v)(1+h(u, v)),

with ε > 0. The origin of system (8) is a linear type center for all ε > 0
because the eigenvalues at the singular point located at the origin are
±√

ε i and the differential system (8) is invariant by the symmetry
(u, v, t) 7→ (−u, v, −t). Now going back to initial variables (x, y, t) we
get that the differential system (8) becomes

(9) ẋ = y + F1(x, y) + εM1(x, y), ẏ = −εx + F2(x, y) + εM2(x, y),

where M1 = (x + f) ∂f/∂y and M2 = −(x + f) ∂f/∂x − f . Since
system (8) has a linear type center at the origin for all ε > 0, the same
holds for system (9). This completes the proof of the theorem.

It is interesting to note that the perturbation −εu in system (8) is
transformed in a perturbation in system (9) which only depends on the
function f but not on the function g of the change of variables (5). This
fact makes the algorithm (derived from Theorem 1) that we describe
in the next section for detecting nilpotent centers more straightforward
because only depends on the arbitrary parameters of the function f .

3. Algorithm derived from Theorem 1

Consider that we want to determine the necessary conditions to have
a center of a certain nilpotent system. In the correct coordinates this
nilpotent system has the form (2) where F1 and F2 are analytic func-
tions without constants and linear terms and such that the origin of (2)
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is a monodromic singular point. We recall here the Andreev’s theorem
which characterizes when a nilpotent singular point is monodromic, see
[5]. We need this theorem to assure that the nilpotent system has a
monodromic singular point at the origin.

Theorem 2 (Andreev). Let X = (y + F1(x, y), F2(x, y)) be the vector
field associated to system (2). Let y = ϕ(x) be the solution of the
equation y + F1(x, y) = 0 passing through the origin. Assume that the
expansion of the function F2(x, ϕ(x)) is of the form ξ(x) = αkx

k +
O(xk+1) and ∆(x) = divX (x, ϕ(x)) = βnxn + O(xn+1) with αk ̸= 0,
k ≥ 2 and n ≥ 1. Then, the origin is either a focus or a center if and
only if k is odd, αk < 0, and

• either k = 2n + 1 and β2
n + 4αk(n + 1) < 0,

• or k < 2n + 1,
• or ∆(x) ≡ 0,

The first step is to perturb system (2) in such a way that it can have
at the origin a linear type center system, so we consider the perturbed
system

(10) ẋ = y + F1(x, y) + εM1(x, y), ẏ = −εx + F2(x, y) + εM2(x, y),

with M1 = (x + f) ∂f/∂y and M2 = −(x + f) ∂f/∂x − f and where
f(x, y) is an analytic function without constant and linear terms, that
can be expressed as

(11) f(x, y) =
∞∑

i,j≥2

aijx
iyj,

where aij ∈ R are arbitrary parameters to be fixed by the algorithm.
Hence we propose the function f and we try to solve using the Poincaré–
Lyapunov method (i.e. looking for a first integral) the center problem
for system (10).

We first simplify the linear part of system (10) performing the linear
change of coordinates (x, y) 7→ (x/2−y/(2

√
ε), x/2+y/(2

√
ε) obtaining

a system of the form

(12) ẋ = y + A(x, y, ε), ẏ = −x + B(x, y, ε),

where A and B are analytic functions in x and y but not analytic in ε.
In order to avoid to work with square roots of ε we change ε → ε2 from
now on. Now the linear part of system (12) is the standard one and
we can apply the classical Poincaré-Lyapunov method. We apply the
method taking polar coordinates x = r cos θ, y = r sin θ and system
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(12) becomes

(13) ṙ =
∞∑

s=2

Ps(θ, ε)r
s, θ̇ = 1 +

∞∑

s=2

Qs(θ, ε)r
s−1,

where Ps(θ, ε) and Qs(θ, ε) for s = 2, 3, . . . are homogeneous trigono-
metric polynomials respect to θ. Now we propose the Poincaré series

(14) H(r, θ, ε) =
∞∑

n=2

Hn(θ, ε)rn,

where H2(θ, ε) = 1/2 and Hn(θ, ε) are trigonometric polynomials re-
spect to θ of degree n. Imposing that this power series is a formal first
integral of system (14) we obtain

Ḣ(r, θ, ε) =
∞∑

k=2

V2k(ε)r
2k.

where V2k(ε) are the Poincaré-Lyapunov contants that in this case de-
pend on ε. To determine the necessary condition to have a center at
the origin we must vanish these V2k(ε). It is easy to see by the recur-
sive equations that generate the V2k(ε) that these V2k(ε) are rational
functions in ε, see [13]. So we take common denominator in the expres-
sion of V2k(ε) and we vanish the polynomial in ε that appears in the
numerator. This polynomial must be vanish for all ε, hence we obtain
that any coefficient of this polynomial in ε must be zero. Usually these
conditions are fulfilled appropriately choosing the parameters of the
analytical function f . However, in some cases this is not possible and
the parameters of the differential system (2) should be used. When
system (2) is polynomial, due to the Hilbert’s basis theorem, we have
that the set of necessary conditions to have a center will be obtained
in a finite number of steps. Whenever we find a necessary condition
for system (2), we must take into account if this system already has a
center at the origin. For a polynomial system we need only a finite jet
of the function f because the number of steps is finite. Consequently
the perturbation required to detect all the necessary conditions will be
polynomial, this means that the function f will be also a polynomial.

We recall the following result proved in [13].

Theorem 3. Suppose that the origin of the real analytic differential
system (2) is monodromy, and that this system is limit of linear type
centers of the form (4). Suppose also that there is no singular point of
(4) tending to the origin when ε tends to zero. Then, system (2) has a
center at the origin.
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We note that under the assumptions of Theorem 3 if system (10) has
not a center at the origin, then it is not possible to fulfill the necessary
center conditions of (10) only with the parameters of the perturbation
because in that case system (10) would have a center at the origin for
arbitrary values of the parameters of the family, and this is not possible.

4. Applications

In this section we illustrate how to apply the method described in
the previous section to several families of polynomial differential sys-
tems for detecting nilpotent centers. Some of these families have been
studied by other authors with the different methods described in the
introduction of the present work. However some of these methods are
unable to get the algebraic conditions and the conditions are obtained
numerically. We will see that with the described algorithm we can find
the algebraic conditions explicitly. There are no nilpotent centers for
quadratic polynomial differential systems, see [11] and Proposition 5 in
[16], so the simplest nilpotent polynomial centers must be of degree 3.

Example 1. We study when the system

(15) ẋ = y + ax2, ẏ = −x3 + bx2y,

has a nilpotent center.

Proposition 4. System (15) has a nilpotent center at the origin if and
only if |a| <

√
2 and b = 0.

Proof. We separate the proof into three cases.

Case 1: a = b = 0. In this case system (15) becomes Hamiltonian with
H = y2/2 + x4/4. So the origin is a global nilpotent center.

Case 2: ab ̸= 0. Applying Andreev’s Theorem 2 we obtain that ϕ(x) =
−ax2, from where ξ(x) = −x3 − abx4, ∆(x) = 2ax + bx2, and then we
have k = 3, α3 = −1, n = 1, and β1 = 2a. Hence k = 2n + 1. To
have monodromy we must impose β2

1 + 4α3(n + 1) < 0 which implies
4a2 − 8 < 0. Consequently system (15) has a monodromic singular
point at the origin if and only if 0 < |a| <

√
2.

We apply the algorithm to the perturbed system

(16)

ẋ = y + ax2 + ε2(x + f)
∂f

∂y
,

ẏ = −ε2x − x3 + bx2y − ε2

(
(x + f)

∂f

∂x
+ f

)
,

where ε > 0. We obtain that the first nonzero Lyapunov constant is
V4 = (b − 6aa20 − 2aa02e

2)/(2ε). We note that in V4 only appear the
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linear and quadratic terms of f . Vanishing V4 at any order in ε we
get the conditions a20 = b/(6a) and a02 = 0 on the parameters of the
perturbation. The next nonzero Lyapunov constant is

V6 =
1

108a2ε3

[
− 18a2(6a2 − 5)b − 108a3(a04 − 2a03a11)ε

6

+18a2(14a2a03 + 24aa11a21 − 6aa22 − 4a2
11b + a12b)ε

4

+(324a4a21 − 540a3a40 − 234a3a11b + 270a2a30b + 5b3)ε2
]
.

We remark that in V6 only appear terms of f up to degree 4. Vanishing
V6 at any order in ε we get the first necessary center condition a2(6a2 −
5)b = 0 for system (15) and for an arbitrary perturbation. We obtain
also other conditions on the parameters of the perturbation. The next
nonzero Lyapunov constant has the form

V8 = − 1

5184a4ε5

[
− 18a4(6a2 − 5)(135 + 688a2)b + O(ε2)

]
.

Therefore, as ab ̸= 0, a necessary conditions is 6a2 − 5 = 0 which
implies a =

√
5/6 ≈ 0.912871 or a = −

√
5/6 ≈ −0.912871. It seems

that the necessary condition 6a2 − 5 = 0 is also sufficient. However
going further with the algorithmic method appears the condition b = 0
in contradiction with the assumptions of this case. This condition can
be also detected using the theory of normal forms, used for instance in
[1]. Hence in this case there are no nilpotent centers.

Case 3: a = 0 and b ̸= 0. Applying Andreev’s Theorem 2 we obtain
that ϕ(x) = 0, from where ξ(x) = −x3, ∆(x) = bx2, and then we have
k = 3 and n = 2. Since k < 2n + 1 then the origin is monodromic.
Applying the algorithm described in section 3 to system (15) we can
obtain V4 = b/(2ε). Hence implies b = 0 in contradiction with the
assumptions of this case. Hence in this case there are no nilpotent
centers.

Case 4: a ̸= 0 and b = 0. Applying Andreev’s Theorem 2 we obtain
that ϕ(x) = −ax2, from where ξ(x) = −x3, ∆(x) = 2ax, and then
we have k = 3, α3 = −1, n = 1, and β1 = 2a. Hence it is verified
k = 2n + 1. To have monodromy we must impose β2

1 + 4α3(n + 1) < 0
which implies 4a2−8 < 0. Consequently system (15) has a monodromic
singular point at the origin if and only if |a| <

√
2. Moreover, if b = 0

system (15) is invariant by the symmetry (x, y, t) 7→ (−x, y, −t) and it
has a center at the origin. �

However, in general, we are far to solve completely the center prob-
lem given any necessary condition which seems sufficient. System (15)
is studied in [34] using generalized polar coordinates and computing
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some generalized Lyapunov constants. The method developed in [34]
is not useful to give the algebraic condition 6a2 − 5 = 0, although the
author claims that using the Lyapunov generalized coordinates it is
possible to arrive to such condition.

Example 2. We now consider the system

(17) ẋ = y + ax2 + 5xy2, ẏ = −2x3 + 3xy2 − 4y3.

For system (17) we can establish the following result.

Proposition 5. A necessary condition in order that system (17) has
a nilpotent center at the origin is that −98 + 47a2 + 20a4 = 0.

Proof. Applying Andreev’s Theorem 2 we obtain that ϕ(x) = −ax2 +
O(x3), from where ξ(x) = −2x3 + O(x4), ∆(x) = 2ax + O(x2), and
then we have k = 3, α3 = −2, n = 1, and β1 = 2a if a ̸= 0. Hence it is
verified k = 2n+1. To have monodromy we must impose β2

1 +4α3(n+
1) < 0 which implies 4a2 − 16 < 0. Consequently system (15) has a
monodromic singular point at the origin if and only if |a| < 2. For the
case a = 0 the origin is always monodromic because we have ϕ(x) = 0,
from where ξ(x) = −2x3 and ∆(x) = 0. Now we apply the algorithm
described in section 3 to system (17). For the case a = 0 it is easy
to see using the algorithm that system (17) has always a focus at the
origin. For a ̸= 0, we apply the algorithm to the perturbed system

(18)
ẋ = y + ax2 + 5xy2 + ε2M1(x, y),
ẏ = −ε2x − 2x3 + 3xy2 − 4y3 + ε2M2(x, y),

where M1 and M2 are given in Theorem 1 and ε > 0. We obtain that the
first nonzero Lyapunov constant is V4 = −(6aa20 +7ε2 +2aa02ε

2)/(2ε).
Vanishing V4 we get the conditions a20 = 0 and a02 = −7/(2a) on the
parameters of the perturbation. Next we compute the second nonzero
Lyapunov constant given by

V6 =
1

6aε

[
2a(−21 + 28a2 + 9a2a21 − 15aa40) + a(−156 + 14a2a03

+121aa11 − 18a21 + 24aa11a21 − 6aa22 − 63a30)ε
2

+3(−6aa03 − 2a2a04 − 42a11 + 4a2a03a11 + 14aa2
11 − 7aa12)ε

4
]
.

Vanishing V6 at any order in ε we obtain conditions on the parameters
of the perturbation. We have isolated the parameters

a21 =
1

9a2
(21 − 28a2 + 15aa40),

a30 =
1

63
(−156 + 14a2a03 + 121aa11 − 18a21 + 24aa11a21 − 6aa22),
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a12 =
2

7a
(−3aa03 − a2a04 − 21a11 + 2a2a03a11 + 7aa2

11).

The next nonzero Lyapunov constant has the form

V8 =
1

54432a4ε3

[
13608 a4(−98 + 47a2 + 20a4) + O(ε2)

]
.

Therefore, a necessary condition to have a center is −98+47a2+20a4 =
0 which implies a ≈ 1.153741 or a ≈ −1.153741. �

System (17) is studied in [33] using generalized polar coordinates and
computing some generalized Lyapunov constants. The method devel-
oped in [33] is not useful to give the algebraic condition −98 + 47a2 +
20a4 = 0. In some cases the values of the parameters of the original
system that vanish the Lyapunov constants are not roots of algebraic
equations but it is also difficult to prove that we have a sufficient con-
dition as the following example shows.

Example 3. Consider the system

(19) ẋ = y, ẏ = −x3 + ay2 + bx3y + cy3.

For system (19) we have the following result.

Proposition 6. A necessary condition in order that system (19) has
a nilpotent center at the origin is that ab(ab + 3c) = 0. Moreover the
conditions a = c = 0 or a = b = 0 are also sufficient.

Proof. Applying Andreev’s Theorem 2 we can see that the origin of
system (19) is monodromic. Actually we obtain that ϕ(x) = 0, from
where ξ(x) = −x3, ∆(x) = bx3, and then we have k = 3, α3 = −2,
n = 3, and β3 = b. Hence it is verified k > 2n + 1 with k odd
which implies that the origin is always monodromic. Now we apply the
algorithm described in section 3 to the perturbed system

(20) ẋ = y+ε2M1(x, y), ẏ = −ε2x−x3+ay2+bx3y+cy3+ε2M2(x, y),

where M1 and M2 are given in Theorem 1 and ε > 0. We obtain
that the first nonzero Lyapunov constant is V4 = (3c − 2aa11)ε/2.
Vanishing V4 we get the condition a11 = 3c/(2a) on the parameter
of the perturbation. Now, we compute the second nonzero Lyapunov
constant which is

V6 = − 1

6ε

[
− 7ab + 15a20b − 9c + (14a2a21 − 24aa20a21 + 6aa31

+3a02b + 9a2c − 51aa20c + 72a2
20c − 27a30c)ε

2 + (18a2a03 + 6aa13

−12aa03a20 − 12aa02a21 − 15aa02c − 9a12c + 36a02a20c)ε
4
]
.
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Vanishing V6 at any order in ε we obtain conditions on the parameters
of the perturbation. We have isolated the parameters. In fact we isolate
a20 from the term without ε, a02 form the term with ε2 and a13 form
the term with ε4. The next nonzero Lyapunov constant has the form

V8 = − 1

540000a2b4ε3

[
472500a2b4(ab + 3c) + O(ε2)

]
.

Therefore a necessary condition is ab(ab + 3c) = 0. If a = 0, then
V4 = 3c/2 which implies c = 0. If b = 0, then V6 takes the form

V6 = − 1

6ε

[
− 9c + O(ε2)

]
,

which implies c = 0. Now we prove that these two conditions are
sufficient. If a = c = 0 or b = c = 0, we have that system (19) has the
symmetry (x, y, t) 7→ (−x, y, −t) or (x, y, t) 7→ (x, −y, −t), respectively.
Therefore, since the origin is monodromic, it is a center. �

The difficulty in the implementation of the algorithm developed in
this work is the same as the classical Poincaré–Liapunov method for lin-
ear type centers. For obtaining the necessary conditions a big amount
of computations are necessary owing to the number of parameters of
the perturbation that we must add to the initial system. However the
amount of computations that appear in the application of our algorithm
is the usual that appear when we apply the classical Poincaré–Liapunov
method to a system with several parameters. In general, the algorithm
proposed in this work to detect nilpotent centers is easier than the al-
gorithm that we can deduce from the results of [9]. In our algorithm
we have only one arbitrary function f . However in the algorithm based
in the results of [9] three arbitrary functions must be used. One which
appear in the normal form of the nilpotent center and the two coming
from the change of variables. Furthermore the arbitrary function f
that appear in Theorem 3 is always polynomial for polynomial systems
contrary to what happens in the algorithm based on the results of [9].
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[17] J. Giné, On the centers of planar analytic differential systems, Internat. J.
Bifur. Chaos Appl. Sci. Engrg. 17 (2007), 3061–3070.
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1 Departament de Matemàtica, Universitat de Lleida, Avda. Jaume
II, 69; 25001 Lleida, Catalonia, Spain

E-mail address: gine@matematica.udl.cat
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