New PCM storage concept including metal wool as heat transfer enhancement method for solar heat use in industry

Cristina Prieto1,2, Carlos Rubio1, Luisa F. Cabeza3

1Abengoa Energia, c/ Energía Solar 1, 41012 Sevilla, Spain
2University of Seville, Department of Energy Engineering, Camino de los Descubrimientos s/n, 41092, Seville, Spain
3GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain

Abstract

Thermal energy storage is recognized as a key technology in the energy transition the world is facing today. But the main technical barrier this technology has to achieve wider deployment the low thermal conductivity of the materials used, the so-called phase change materials (PCM). This paper presents a new concept for thermal conductivity enhancement of a PCM tank using metal wool. Metal wool is one of the least studied method to enhance PCM thermal conductivity, while it has high potential to do so at a low cost. This study shows the experimental prototype that developed for the validation of the effective conductivity of the composite formed by NaNO3 salts and metal wool. The metal wool used is produced and arranged to ensure the right porosity and packaging to increase 300% the effective thermal conductivity of the mixture. The model validated confirms the movement of the fluid during the melting standardizes the temperature of the molten material, increasing the transference. The model also validates the new composite, with wool and NaNO3 as PCM, as one of the most promising materials to be used in applications that need heat to be stored at around 280-300ºC. Such applications include use of solar energy and waste heat in industry.

Keywords: latent heat storage; phase change material; thermal conductivity enhancement technique; metal wool.
1. Introduction

The use of phase change materials (PCM) to store solar energy in different applications was developed by many researchers in the last two decades, and the use of this technology in the so-called high temperatures applications is increasing [1–4]. Within this context, high temperature applications are those using storage at temperatures higher than 150ºC, going up to 1000ºC in applications such as concentrated solar power, and being between 200ºC and 400ºC in applications that use solar energy in industry or for industrial waste heat recovery.

Nevertheless, most authors coincide that one of the main drawbacks for the use of PCM when high power is needed is the low thermal conductivity of the materials. Gasia et al. 2016 [5] shows a detailed review of the thermal conductivity enhancement techniques found in the literature. These techniques were classified as the addition of extended surfaces (fins or heat pipes) or the combination of highly conductive materials with the PCM (such as graphite, metal foams, or nano-additives).

Although fins are commonly used in the industry, the transient behaviour of PCM heat exchange add up other challenges to be considered, such as the shape and position of the fins [6]. The use of graphite foams with high porosity is the other highly; here the main challenge is the infiltration of the PCM in the graphite matrix. When highly conductive particles are added in the PCM the main drawback is the deposition of the particles after several thermal cycles.

A comparison of the different techniques, with their main advantages and drawbacks are presented in Table 1. The properties considered for the comparison were technical ones (high thermal conductivity enhancement, easy optimization of the storage system, and easy inclusion of the PCM), economical (low cost), of system performance (control of the PCM volume expansion and potential corrosion), and environmental (waste/by-product and easy disposal after use). Metal fins and graphite composite are ticked as positive in only three of those aspects, while metal fibres have more positive aspects than negative ones.
<table>
<thead>
<tr>
<th>Advantage</th>
<th>Metal fins</th>
<th>Metal fibres</th>
<th>Nano-additives</th>
<th>Graphite composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>High thermal conductivity enhancement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Easy optimization of the system</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Easy inclusion of the PCM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Low cost</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Control of the PCM volume expansion</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Potential corrosion</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Waste/by-product</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Easy disposal</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Badenhorst 2019 [7] recently presented a deep review of the application of carbon materials in PCM systems. It is interesting to see that thermal conductivity enhancement was much higher in continuous composites and matrix than in particulate additives (graphite foams $k=30-270$ W/m·K vs. graphitic fibres $k=0.3-8.0$ W/m·K).

One of the less explored thermal conductivity enhancement techniques is the use of metal wool, while its potential for high thermal conductivity enhancement with a low cost. This thermal conductivity enhancement technique has shown good potential in low temperature applications [8,9]. Recently, Yousef et al. 2019 [10,11] studied the use of a latent heat storage system in a solar still, using metal wool fibres as heat transfer enhancement method, comparing the performance of the storage system with other heat transfer enhancement methods (such as fins); they measured experimentally an increase of 25% in the daily productivity of fresh water. Nevertheless, this heat transfer enhancement method is one of the least studied. To contribute to this gap in the literature, this paper presents a new concept to use PCM in high temperature applications using metal wool as thermal conductivity enhancement.
2. Materials and method

The metal wool, also called metal matrix, is formed by several fibres with a given orientation, obtained when cutting a metal cable with blades. The fibres have a diameter between 10 and 300 µm and a thermal conductivity of 40 W/m·K. The properties of the fibres are included in Table 2.

Table 2. Properties of the metal fibre by Barlesa®

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Stainless steel (AISI 424)</td>
</tr>
<tr>
<td>Supplier</td>
<td>Barlesa®</td>
</tr>
<tr>
<td>Density [kg/m³]</td>
<td>199</td>
</tr>
<tr>
<td>Pure steel density [kg/m³]</td>
<td>7800</td>
</tr>
<tr>
<td>Porosity [ppu]</td>
<td>0.97</td>
</tr>
<tr>
<td>Thermal conductivity aligned [W/m·K]</td>
<td>3</td>
</tr>
<tr>
<td>Thermal conductivity normal [W/m·K]</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The PCM used in NaNO₃ from SQM®, refined grade, with the properties shown in Table 3.

Table 3. PCM used properties

<table>
<thead>
<tr>
<th>Property</th>
<th>NaNO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting enthalpy</td>
<td>177 kJ/kg</td>
</tr>
<tr>
<td>Melting temperature</td>
<td>307°C</td>
</tr>
<tr>
<td>Density</td>
<td>2260 kg/m³</td>
</tr>
<tr>
<td>Volume expansion</td>
<td>16%</td>
</tr>
<tr>
<td>Cost</td>
<td>0.38 €/kg</td>
</tr>
</tbody>
</table>

The storage tank is to a shell and tube heat exchanger with the heat transfer fluid flowing inside the tube and the PCM in the shell. In the experimental set-up, the heating was carried out with an electrical heater (Figure 1). The metal wool is placed in the PCM side of the tank with the fibres in 16 layers oriented perpendicular to the inner pipe to ensure best heat transfer; each layer of fibres changes the heat transfer direction (Figure 2) to avoid the preferential direction. The thermal conductivity coefficient of pure sodium nitrate considered was 0.50 W/m·K, value found in the literature [12]. The porosity of the wools used in the prototype was 98.6%
To be able to register the temperature distribution in all the storage tank, 24 thermocouples of contact, model TE 67.50 (max. operating temperature 400°C, type K, limiting error ±1.5°C), supplied by Wika® were inserted as shown in Figure 3 (12 internal thermocouples for monitoring internal temperature, 12 surface thermocouples for monitoring heat loses and 1 more in the heater). Finally, 6 thermocouples were also included in the insulation.

Figure 1. Scheme of the experimental PCM tank.

Figure 2. Metal wool inserted in the storage tank
For the evaluation of thermal losses, some contact thermocouples are also distributed along the outer surface of the container and are located between the container shell and the external insulation.

Experiments were used to validate the finite element model developed, both considering static and dynamic analysis. The experiments carried out are:

- Isothermal tests: the electrical heater is switched on with given conditions and the tank is
measured until all of it is at the same temperature. With this experiment the output to be evaluated is effective thermal conductivity, thermal losses, and contact resistance.

- Dynamic cycling: melting and freezing cycles are carried out to evaluate the PCM performance.

3. Model description

The heat transfer flows in the PCM storage tank are presented in Figure 5. The energy balance of the system is described by:

\[Q_{Res} = Q_{np} + Q_{in} \] \hspace{1cm} \text{Eq. 1}

\[Q_{in} = Q_{Lat} + Q_{BOT} + Q_{TOP} \] \hspace{1cm} \text{Eq. 2}

where \(Q_{Res} \) is the energy given by the electrical resistance, \(Q_{np} \) is the energy from the electrical resistance lost from its top and bottom, \(Q_{in} \) is the energy from the electrical resistance going into the PCM, \(Q_{Lat} \), \(Q_{TOP} \), and \(Q_{BOT} \) is the energy lost in the lateral, top, and bottom side of the container, respectively.

![Figure 5. Heat transfer flows in the PCM tank](image)

The storage tank is modelled considering discharging the composite (solidification) and charging it (melting) around a cylindrical pipe where the heat transfer fluid (HTF) flows inside and the composite is around it, following the model presented in Abujas et al. 2016. During solidification, the Stephan equation for cylinders is used, when a solid layer of PCM (salt) is formed around the pipe [12]:

\[t = \frac{H_{lat} \cdot s^2}{2k(T_m-T_0)} f(s^+, \beta) \] \hspace{1cm} \text{Eq. 3}
\[\beta_{cit} = \frac{k}{k_{wall}} \ln\left(\frac{R}{R-e_{wall}}\right) + \frac{k}{\alpha(R-e_{wall})} \quad \text{Eq. 4} \]

\[f(s^+, \beta) = \left(1 + \frac{1}{s^+}\right)^2 \ln(1 + s^+) - \left(1 + \frac{2}{s^+}\right)\left(\frac{1}{2} - \beta\right) \quad \text{Eq. 5} \]

\[s^+ = \frac{s}{R} \quad \text{Eq. 6} \]

Where:

- \(H_{lat} \): PCM phase change enthalpy
- \(s \): PCM layer thickness
- \(k \): PCM thermal conductivity
- \(T_m \): PCM melting temperature
- \(T_0 \): Interior surface temperature
- \(f \): Cylinder factor
- \(\rho \): PCM density
- \(\epsilon \): Volumetric proportion of the different compounds
- \(k \): Composite thermal conductivity

The model consists of an axisymmetric cross-section, representing the flow of HTF through the pipe and the PCM that surrounds these pipes. In general, for a cylindrical domain with homogeneous, isotropic thermal conductivity, the enthalpy equation gives:

\[\frac{\partial h}{\partial t} = \frac{k}{r} \left[\frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \right] + \kappa \frac{\partial}{\partial z} \left(\frac{\partial T}{\partial z} \right) \quad \text{Eq 7} \]

On the other hand, our problem is not quite so simple. This simple equation does not apply near the wall since we have a pipe that has a different thermal conductivity from the composite. The pipes are considered by using an effective thermal conductivity for the composite element closest to the pipe, and the heat storage capacity of the pipes is not taken into account. The effective thermal conductivity is considered the maximum possible of the homogeneous mixture of two materials:

\[k_{eff}^{MAX} = \epsilon k_{PCM} + (1 - \epsilon)k_{Wool} \quad \text{Eq. 6} \]

where:

- \(\epsilon \): Volumetric proportion of the different compounds
A 2D model was developed, generating two symmetry planes. Each layer was represented by four surfaces, representing the storage material, the container material and the two insulation layers (Figure 6). The model was discretized with a uniform mesh of about 5 mm what means 3808 elements in the model with a time step of 0.05s. A grid refinement study of the mesh was carried out, reducing the time step to avoid divergence and optimising Δr, being Δr the most important factor for precision.

The considered boundary conditions were an ambient temperature of 10ºC.

![Figure 6. Layers used in the modelling of the storage tank](image)

At wall, radial heat transfer with convection and conduction through wall thickness is considered. At all points along the tube axis, the fluid characteristics (temperature, enthalpy, and quality) are calculated at each time iteration. These fluid properties allow calculation of the rest of the fluid properties, such as Prandtl number and viscosity.

First a stationary analysis was carried out with the aim of evaluating the temperature distribution in the storage tank. The study was carried out at 190ºC, 250ºC, and 290ºC. The effective thermal conductivity of the insulation materials was found with this evaluation as detailed above.

4. **Model validation**

As first approximation, the temperature distribution inside the tank in steady state conditions is modelled. The same temperatures as those tested experimentally were modelled, 190ºC, 250ºC, and 290ºC.

The effective thermal conductivity of the composite was calculated with a parametric study of the heat losses of the tank, using a penalization to the thermal conductivity, K_{pen}. Results for 250ºC
were the following, with the simulation and its comparison with the experimental results presented in Figure 7:

\[K_{pen} = 3.8 \quad k_{mat} = 1.99 \, W/mK \]

\[\Delta T = 2.25^\circ C \quad \Delta T_{MAX} = 6^\circ C \quad \Delta T_{min} = 0.48^\circ C \]

\[\hat{Q}_{h}^{SIM} = 73.95 \, W \quad \hat{Q}_{h}^{EXP} = 73.47 \, W \]

where:

- \(k_{mat} \): Composite thermal conductivity (W/mK)
- \(\Delta T \): Difference between experimental and simulated temperature (°C)
- \(Q \): Heat in the system (W)

Figure 7. Left: simulation of the temperature (°C) distribution for the 250°C case. Right: comparison with experimental results

Similarly, results for the case of 150°C are shown in Figure 8 and those for 290 in Figure 9.

From these experiments, the final effective thermal conductivity of the composite is considered to be 2 W/m·K, which is 300% higher than that of the pure salt.
\[\Delta \bar{T} = 2.59^\circ C \]
\[\Delta T_{MAX} = 4.37^\circ C \]
\[\Delta T_{min} = 0.23^\circ C \]
\[\dot{Q}_h^{SIM} = 39.79 \, W \]
\[\dot{Q}_h^{EXP} = 37.54 \, W \]

Figure 8. Results for the 190\(^\circ\)C case

\[\Delta \bar{T} = 4.7^\circ C \]
\[\Delta T_{MAX} = 8^\circ C \]
\[\Delta T_{min} = 1.16^\circ C \]
\[\dot{Q}_h^{SIM} = 90.31 \, W \]
\[\dot{Q}_h^{EXP} = 87.40 \, W \]

Figure 9. Results for the 290\(^\circ\)C case

Next, the validation was carried out in heating up the composite. Figure 10 and Figure 11 shows the comparison between experimental results and simulation. Results showed good adjustment of results.
5. Results

5.1. Dynamic cycling of PCM
To model the dynamic behaviour of the composite, first only conduction heat transfer is used, and the comparison with the experimental PCM melting results are shown in Figure 12. As it can see, the results obtained by the simulation (dashed lines) do not correspond to the results obtained experimentally (solid line).

The Figure 13 show how the distribution of temperature (left) and internal energy (right) of the simulation are not consistent when the model considers just the conduction as the main transport mechanism. In this simulation, only the PCM next to the pipe changes phase, while in the experiments all the PCM has melted. Therefore, convection heat transfer should be considered [8,13]. In order to simplify the simulations, a very high thermal conductivity was used, 20 W/m·K, 200 W/m·K, and 2000 W/m·K, finding the best results with 20 W/m·K (Figure 14), where the experimental (dashed lines) and simulation (solid lines) results of the PCM melting when a thermal conductivity of 20 W/m·K is considered has significantly improved their approach.

![Figure 12. Experimental (dashed lines) and simulation (solid lines) results of the PCM melting when only conduction heat transfer is considered](image-url)
Figure 13. Simulation of the PCM behaviour when only conduction heat transfer is considered. Left: temperature distribution; right: internal energy distribution.

Figure 14. Experimental (dashed lines) and simulation (solid lines) results of the PCM melting when a thermal conductivity of 20 W/m·K is considered.

The simulation of the freezing case is carried out next. The comparison with experimental results is presented in Figure 15. The simulation results show a slower freezing than the experimental ones, but when heat flux boundary conditions are considered in the model, the agreement reached is adequate (Figure 16) and the temperature distribution is the expected one (Figure 17).
Figure 15. Experimental (dashed lines) and simulation (solid lines) results of the PCM freezing when a thermal conductivity of 20 W/m·K is considered.

Figure 16. Experimental (dashed lines) and simulation (solid lines) results of the PCM freezing when a thermal conductivity of 20 W/m·K and heat flux boundary conditions are considered.
Figure 17. Simulation of the PCM behaviour when convection heat transfer with heat flux boundary conditions is considered. Left: temperature distribution; right: internal energy distribution

5.2. Comparison of thermal conductivity enhancement techniques

The theoretical comparison was carried out considering a cylindrical pipe with 24 mm of diameter at 307 ºC initial temperature, being melted with the HTF. The stored energy and melting displacement results of the NaNO₃ as PCM alone are presented in Figure 18. After 8 h of heating, the PCM is melted up to 47 mm diameter, storing around 0.12 kWh/m, giving an average power of 0.3 kW, which is in accordance with the values found in the literature [14,15].

Table 4. NaNO₃ PCM properties

<table>
<thead>
<tr>
<th>Characteristic / Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy density</td>
<td>177 kJ/kg</td>
</tr>
<tr>
<td>Specific heat</td>
<td>1.65 kJ/kg·K</td>
</tr>
<tr>
<td>Melting point</td>
<td>~305 ºC</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>~0.5 W/m·K</td>
</tr>
</tbody>
</table>
As stated before, when fins are added to the PCM, the thermal conductivity increases [6]. The fin system studied by DLR [16] and Abengoa [6] was modelled (Figure 19), considering the properties shown in Table 5. The obtained results are shown in Figure 20. In this configuration, when fins are used, the energy stored and the melting velocity increase. After 8 h already 34% of the PCM melts, storing around 0.3 kWh/m with an average power of 0.75 kW.

Figure 19. Left: Fins studied. Right: Simulation of the system.
Table 5. Characteristics of the fin system added to the PCM

<table>
<thead>
<tr>
<th>Characteristic / Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Carbon steel</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>40 W/m·K</td>
</tr>
<tr>
<td>Density</td>
<td>8030 kg/m³</td>
</tr>
<tr>
<td>Specific heat</td>
<td>0.502 kJ/kg·K</td>
</tr>
<tr>
<td>External pipe diameter</td>
<td>0.024 m</td>
</tr>
<tr>
<td>Pipe thickness</td>
<td>0.002 m</td>
</tr>
<tr>
<td>PCM total diameter</td>
<td>0.120 m</td>
</tr>
<tr>
<td>Fins thickness</td>
<td>0.001 m</td>
</tr>
<tr>
<td>Fins area in the PCM</td>
<td>10%</td>
</tr>
</tbody>
</table>

Figure 20. Stored energy in the Na NO3 with fins as PCM composite and melting diameter displacement.

The effect of metal wool as thermal conductivity enhancement technique was studied with the characteristics shown in Table 3, Table 6 and Table 7, and the results are presented in Figure 21. In this configuration, when wool and NaNO₃ are used as PCM composite, the energy stored and the melting velocity present the highest value. After 8 h of melting, the stored energy is 0.72 kWh/m with an average power of 1.23 kW. Comparing these results with the results of the
configuration with 10% fins of the same material gives a storage power of 64% greater (1.23 kW vs. 0.75 kW).

Table 6. Characteristics of the metal wool

<table>
<thead>
<tr>
<th>Characteristic / Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Steel metal wool</td>
</tr>
<tr>
<td>Porosity</td>
<td>90%</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>40 W/m·K</td>
</tr>
</tbody>
</table>

Table 7. Characteristics of the composite PCM+wool

<table>
<thead>
<tr>
<th>Characteristic / Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of PCM composite</td>
<td>2495 kg/m³</td>
</tr>
<tr>
<td>Effective thermal conductivity</td>
<td>4.48 W/m·K</td>
</tr>
<tr>
<td>Energy density</td>
<td>12 kJ/kg</td>
</tr>
</tbody>
</table>

Figure 21. Stored energy in the Na NO₃ with wools as PCM composite and melting diameter displacement
6. Conclusions

This paper addresses one important barrier for the deployment of the use of phase change materials, their low thermal conductivity. To overcome this disadvantage, a simple, cheap, and often disregarded method is thoughtfully investigated, the use of metal wool. Results show that using metal wool with the appropriate porosity and arrangement can increase significantly the effective thermal conductivity of a composite storage tank without decreasing the energy density to unacceptable values, which was one of the main problems found in former studies. The temperature of the PCM used (NaNO₃) shows that this would be a good solution for industrial applications, both of solar energy use or of waste heat reuse.

A storage finite element model is developed and is validated experimentally in a prototype. Static analysis, dynamics, and finally phase change analysis (fusion and crystallization) are implemented in the model validation. The static tests in solid state have shown an effective conductivity of 2 W/m·K in the composite, that means an increase of 300% in comparison with the salt conductivity. The tests carried out during the melting process have determined that the movement of the fluid standardizes the temperature of the molten material. Different tests were carried out to quantify this effect and finally determining that the composite behaves as if there is a conductivity in the liquid zone equal to 20 W/m·K. The system was successfully characterized. The main mechanisms of energy transfer were detected, and the new model can be used for the dimensioning of the heat storage applications.

A comparison with the use of fins in the PCM, a more common method of thermal conductivity enhancement, has also shown that the steel wool composite model, with the addition of the same amount of material (10% volume in both cases) and a simpler assembly process to the fin assembly, has significantly improved the heat transfer.

Acknowledgements

The research leading to these results has received funding from CDTI in the project Innterconecta Thesto (ITC-20111050). The work partially funded by the by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE). This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). Dr. Cabeza would like to thank the Catalan Government for the quality accreditation given to her research group GREiA (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA
References

