Machine Learning Approaches for Comprehensive Analysis of Population Cancer Registry Data

dc.contributorGodoy i García, Pere
dc.contributorSolsona Tehàs, Francesc
dc.contributorMateo Fornés, Jordi
dc.contributorUniversitat de Lleida. Departament d'Enginyeria Informàtica i Disseny Digital
dc.creatorFlorensa Cazorla, Dídac
dc.date2023-05-19T12:41:35Z
dc.date2024-04-18T22:05:14Z
dc.date2023-04-19
dc.descriptionEls registres de càncer basats poblacionals són crucials per controlar i estudiar la incidència, mortalitat i supervivència del càncer. A més, explorar fonts d'informació externes per complementar aquests registres permet la identificació de patrons i correlacions de cerca. Aquesta tesi es centra en integrar algunes bases de dades, com les d'estil de vida i medicaments recetats, la informàtica en el núvol i la intel·ligència artificial (IA). La informàtica en el núvol es va utilitzar per implementar un magatzem de dades i una plataforma web per mostrar la incidència de càncer en una regió específica (Lleida). La IA es va utilitzar com a eina per detectar patrons de càncer per l'estil de vida previ dels pacients amb càncer. Els principals resultats van destacar l'ús d'algoritmes d'IA per detectar patrons i factors que poden augmentar el risc de càncer, com el tabaquisme o el consum excessiu d'alcohol. També, el paper de l'aspirina en la reducció del risc de càncer. Els resultats són una llavor essencial per seguir explorant nous mètodes d'IA amb un alt potencial per convertir-se en una referència en el sector epidemiològic del càncer.
dc.descriptionLos registros de cáncer basados poblacionales son cruciales para controlar y estudiar la incidencia, mortalidad y supervivencia del cáncer. Además, explorar fuentes de información externas para complementar estos registros permite la identificación de patrones y correlaciones de búsqueda. Esta tesis se centra en integrar algunas bases de datos, como las de estilo de vida y medicamentos recetados, la informática en la nube y la inteligencia artificial (IA). La informática en la nube se utilizó para implementar un almacén de datos y una plataforma web para mostrar la incidencia de cáncer en una región específica (Lleida). La IA se utilizó como herramienta para detectar patrones de cáncer por el estilo de vida previo de los pacientes con cáncer. Los principales resultados destacaron el uso de algoritmos de IA para detectar patrones y factores que pueden aumentar el riesgo de cáncer, como el tabaquismo o el consumo excesivo de alcohol. También, el papel de la aspirina en la reducción del riesgo de cáncer. Los resultados son una semilla esencial para seguir explorando nuevos métodos de IA con un alto potencial para convertirse en una referencia en el sector epidemiológico del cáncer.
dc.descriptionPopulation-based cancer registries are crucial for controlling and studying cancer incidence, mortality and survival. In addition, exploring external information sources to complement these registries allow for the identification of search patterns and correlations. This thesis focuses on integrating some databases, such as lifestyle and prescription medicines, cloud computing and artificial intelligence (AI). Cloud computing was used to implement a data warehouse and a web-platform to show the cancer incidence in a specific region (Lleida). AI was used as a tool for detecting patterns of cancer by previous lifestyle of cancer patients. The main outcomes highlighted the use of AI algorithms to detect patterns and factors that may increase the risk of cancer, such as smoking or heavy alcohol use. Also, the role of aspirin against cancer risk. The results are essential seed to continue exploring new AI methods with a high potential to become a reference in the epidemiological cancer sector.
dc.descriptionPrograma de Doctorat en Enginyeria i Tecnologies de la Informació
dc.format174 p.
dc.formatapplication/pdf
dc.identifierhttp://hdl.handle.net/10803/688298
dc.languageeng
dc.publisherUniversitat de Lleida
dc.rightsADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectRegistre poblacional de càncer
dc.subjectComputació al núvol
dc.subjectIntel·ligència artificial
dc.subjectRegistro poblacional de cáncer
dc.subjectComputación a la nube
dc.subjectInteligencia artificial
dc.subjectPopulation-based cancer registry
dc.subjectCloud computing
dc.subjectArtificial intelligence
dc.subjectCiències de la Computació i Intel·ligència Artificial
dc.subject004
dc.titleMachine Learning Approaches for Comprehensive Analysis of Population Cancer Registry Data
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
Files
Collections