Environmental heterogeneity in human health studies. A compositional methodology for Land Use and Land cover data

dc.contributor.authorZaldo-Aubanell, Quim
dc.contributor.authorSerra, Isabel
dc.contributor.authorBach, Albert
dc.contributor.authorKnobel, Pablo
dc.contributor.authorCampillo López, Ferran
dc.contributor.authorBelmonte, Jordina
dc.contributor.authorDaunis-i-Estadella, Pepus
dc.contributor.authorManeja Zaragoza, Roser
dc.date.accessioned2022-07-11T13:33:41Z
dc.date.available2022-07-11T13:33:41Z
dc.date.issued2021
dc.description.abstractThe use of Land use and Land cover (LULC) data is gradually becoming more widely spread in studies relating the environment to human health. However, little research has acknowledged the compositional nature of these data. The goal of the present study is to explore, for the first time, the independent effect of eight LULC categories (agricultural land, bare land, coniferous forest, broad-leaved forest, sclerophyll forest, grassland and shrubs urban areas, and waterbodies) on three selected common health conditions: type 2 diabetes mellitus (T2DM), asthma and anxiety, using a compositional methodological approach and leveraging observational health data of Catalonia (Spain) at area level. We fixed the risk exposure scenario using three covariates (socioeconomic status, age group, and sex). Then, we assessed the independent effect of the eight LULC categories on each health condition. Our results show that each LULC category has a distinctive effect on the three health conditions and that the three covariates clearly modify this effect.ca_ES
dc.description.sponsorshipQuim Zaldo-Aubanell was supported by AGAUR FI fellowship (DOGC num. 7720, of 5.10.2018). Isabel Serra acknowledges support from FIS2015-71851-P and PGC-FIS2018-099629-B-I00 from Spanish MINECO and MICINN, and was partially funded by the grant RTI2018- 096072-B-I00 from the Spanish Ministry of Science, Innovation and Universities. Jordina Belmonte was supported by the Spanish Ministry of Science and Technology through the project CTM2017-86565-C2-1-O and by the Catalan Government AGAUR through 2017SGR1692. Pepus Daunis-i-Estadella acknowledges support from the project RTI2018- 095518-B-C21 Methods for Compositional analysis of Data (CODAMET), Ministerio de Ciencia, Innovación y Universidades, Spain.ca_ES
dc.identifier.doihttps://doi.org/10.1016/j.scitotenv.2021.150308
dc.identifier.issn0048-9697
dc.identifier.urihttp://hdl.handle.net/10459.1/83614
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO//FIS2015-71851-P/ES/SISTEMAS INVARIANTES DE ESCALA: HERRAMIENTAS, EVIDENCIA EMPIRICA, MODELOS Y LIMITACIONES/ca_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096072-B-I00/ES/MODELIZACION ESTADISTICA DE EVENTOS EXTREMOS Y RIESGOS PARA LA SALUD/ca_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095518-B-C21/ES/METODOS DEL ANALISIS COMPOSICIONAL DE DATOS/ca_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099629-B-I00/ES/HERRAMIENTAS PROBABILISTAS Y ESTADISTICAS PARA LOS SISTEMAS COMPEJOS/
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.1016/j.scitotenv.2021.150308ca_ES
dc.relation.ispartofScience of the Total Environment, vol. 806, part 1, p. 150308ca_ES
dc.rightscc-by-nc-nd, (c) Zaldo-aubanell et al., 2021ca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLand use and Land coverca_ES
dc.subjectEnvironmental heterogeneityca_ES
dc.subjectCompositional analysisca_ES
dc.subjectType 2 diabetes mellitus
dc.subjectAsthma
dc.subjectAnxiety
dc.titleEnvironmental heterogeneity in human health studies. A compositional methodology for Land Use and Land cover dataca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
scitotenv_a2022v806p150308.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: