Assessment of different N treatments in Hedgerow Almond Orchards by means of LiDAR point clouds
dc.contributor.author | Sandonís Pozo, Leire | |
dc.contributor.author | Llorens Calveras, Jordi | |
dc.contributor.author | Escolà i Agustí, Alexandre | |
dc.contributor.author | Arnó Satorra, Jaume | |
dc.contributor.author | Pascual Roca, Miquel | |
dc.contributor.author | Martínez Casasnovas, José Antonio | |
dc.date.accessioned | 2022-11-07T09:47:12Z | |
dc.date.available | 2022-11-07T09:47:12Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Monitoring of canopy status in fruit tree orchards allows better decisions in the canopy management, such as pruning or fertirrigation. LiDAR is an effective tool to acquire accurate 3D geometric and structural data, such as height, width, volume or canopy porosity, among others. In the present work, a super-intensive almond orchard (Prunus Dulcis) with 8 different N treatments (N50, N100, N150, NStop: N100 only in Fase I and with and without DMPSA nitrification inhibitor in 24 rows and 3 blocks, was scanned during three years (2019-21) in two different vegetative stages (after spring pruning and before harvesting) by means of a terrestrial LiDAR scanner. Canopy parameters such maximum height and width, cross section and porosity were summarized from the LiDAR 3D point cloud every 0.5 m along the almond tree hedgerows. A repeated measure mixed statistical model was applied to each parameter in order to assess the effect of the N treatments. The adjusted R2 ranged from 0.73 of the canopy width to 0.83 of the porosity. Canopy parameters and their main interactions with the different treatments were significantly differentiated. The N100+DMPSA treatment was the one favoring higher canopy development (higher cross sections and widths, and less porosity), while the NStop+DMPSA treatment was related to lower canopy development and higher porosity. | ca_ES |
dc.description.sponsorship | This work was funded by the Spanish Ministry of Science, Innovation and Universities through the project PAgFRUIT (RTI2018-094222 -B-I00). Also this work was supported by Secretaria d’Universitats i Recercadel del Departament d’Empresa i Coneixement de la Generalitat Generalitat de Catalunya under Grant 2017-SGR-646. | |
dc.format.extent | 22 p. | |
dc.identifier.uri | http://hdl.handle.net/10459.1/84121 | |
dc.language.iso | eng | ca_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ | |
dc.relation.ispartof | XXI International N Workshop: Halving nitrogen waste by 2030. Polytechnic University. October 24-28, 2022. Madrid | ca_ES |
dc.rights | (c) Leire Sandonís et al., 2022 | ca_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca_ES |
dc.subject | N treatments | ca_ES |
dc.subject | Hedgerow Almond Orchards | ca_ES |
dc.subject | LiDAR point clouds | ca_ES |
dc.title | Assessment of different N treatments in Hedgerow Almond Orchards by means of LiDAR point clouds | ca_ES |
dc.type | info:eu-repo/semantics/conferenceObject | ca_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | ca_ES |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Comunicacions a congressos (Química, Física i Ciències Ambientals i del Sòl)
Comunicacions a congressos (Agrotecnio Center)
Comunicacions a congressos (Ciència i Enginyeria Forestal i Agrícola)
Comunicacions a congressos (Grup de Recerca en AgròTICa i Agricultura de Precisió)
Publicacions de projectes de recerca del Plan Nacional
Comunicacions a congressos (Agrotecnio Center)
Comunicacions a congressos (Ciència i Enginyeria Forestal i Agrícola)
Comunicacions a congressos (Grup de Recerca en AgròTICa i Agricultura de Precisió)
Publicacions de projectes de recerca del Plan Nacional