Accurate consistency-based MSA reducing the memory footprint

dc.contributor.authorLladós Segura, Jordi
dc.contributor.authorCores Prado, Fernando
dc.contributor.authorGuirado Fernández, Fernando
dc.contributor.authorLérida Monsó, Josep Lluís
dc.date.accessioned2021-07-20T08:41:39Z
dc.date.available2021-07-20T08:41:39Z
dc.date.issued2021
dc.description.abstractBackground and Objective: The emergence of Next-Generation sequencing has created a push for faster and more accurate multiple sequence alignment tools. The growing number of sequences and their longer sizes, which require the use of increased system resources and produce less accurate results, are heavily challenging to these applications. Consistency-based methods have the most intensive CPU and memory usage requirements. We hypothesize that library reductions can enhance the scalability and performance of consistency-based multiple sequence alignment tools; however, we have previously shown a noticeable impact on the accuracy when extreme reductions were performed. Methods: In this study, we propose Matrix-Based T-Coffee, a consistency-based method that uses library reductions in conjunction with a complementary objective function. The proposed method, implemented in T-Coffee, can mitigate the accuracy loss caused by low memory resources. Results: The use of a complementary objective function with a library reduction of 30% improved the accuracy of T-Coffee. Interestingly, 50% library reduction achieved lower execution times and better overall scalability. Conclusions: Matrix-Based T-Coffee benefits from accurate alignments while achieving better scalability. This leads to a reduction in memory footprint and execution time. In addition, these enhancements could be applied to other aligners based on consistency.ca_ES
dc.description.sponsorshipThis work was supported by the MINECO-Spain under contracts TIN2017-84553-C2-2-R and PID2020-113614RB-C22.ca_ES
dc.identifier.doihttps://doi.org/10.1016/j.cmpb.2021.106237
dc.identifier.idgrec031492
dc.identifier.issn0169-2607
dc.identifier.urihttp://hdl.handle.net/10459.1/71689
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84553-C2-2-R/ES/APROVECHANDO LOS NUEVOS PARADIGMAS DE COMPUTO PARA LOS RETOS DE LA SOCIEDAD DIGITAL - UDL/ca_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113614RB-C22/ES/COMPUTACION AVANZADA PARA LOS RETOS DE LA SOCIEDAD DIGITAL/ca_ES
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.1016/j.cmpb.2021.106237ca_ES
dc.relation.ispartofComputer Methods and Programs in Biomedicine, 2021, vol. 208, p. 106237-1-106237-9ca_ES
dc.rightscc-by-nc-nd (c) Jordi Lladós et al., 2021ca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultiple sequence alignmentca_ES
dc.subjectConsistencyca_ES
dc.subjectT-coffeeca_ES
dc.subjectDynamic programmingca_ES
dc.titleAccurate consistency-based MSA reducing the memory footprintca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
031492.pdf
Size:
760.3 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: