Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS Orthomosaics
dc.contributor.author | Ludwig, Marvin | |
dc.contributor.author | Runge, Christian M. | |
dc.contributor.author | Friess, Nicolas | |
dc.contributor.author | Koch, Tiziana L. | |
dc.contributor.author | Richter, Sebastian | |
dc.contributor.author | Seyfried, Simon | |
dc.contributor.author | Wraase, Luise | |
dc.contributor.author | Lobo, Agustin | |
dc.contributor.author | Sebastià, Ma. T. | |
dc.contributor.author | Reudenbach, Christoph | |
dc.contributor.author | Nauss, Thomas | |
dc.date.accessioned | 2021-01-14T07:41:00Z | |
dc.date.available | 2021-01-14T07:41:00Z | |
dc.date.issued | 2020-11-22 | |
dc.description.abstract | Unmanned aerial systems (UAS) are cost-effective, flexible and offer a wide range of applications. If equipped with optical sensors, orthophotos with very high spatial resolution can be retrieved using photogrammetric processing. The use of these images in multi-temporal analysis and the combination with spatial data imposes high demands on their spatial accuracy. This georeferencing accuracy of UAS orthomosaics is generally expressed as the checkpoint error. However, the checkpoint error alone gives no information about the reproducibility of the photogrammetrical compilation of orthomosaics. This study optimizes the geolocation of UAS orthomosaics time series and evaluates their reproducibility. A correlation analysis of repeatedly computed orthomosaics with identical parameters revealed a reproducibility of 99% in a grassland and 75% in a forest area. Between time steps, the corresponding positional errors of digitized objects lie between 0.07 m in the grassland and 0.3 m in the forest canopy. The novel methods were integrated into a processing workflow to enhance the traceability and increase the quality of UAS remote sensing. | ca_ES |
dc.description.sponsorship | This research was funded by the Hessian State Ministry for Higher Education, Research and the Arts, Germany, as part of the LOEWE priority project Nature 4.0—Sensing Biodiversity. The grassland study was funded by the Spanish Science Foundation FECYT-MINECO through the BIOGEI (GL2013- 49142-C2-1-R) and IMAGINE (CGL2017-85490-R) projects, and by the University of Lleida; and supported by a FI Fellowship to C.M.R. (2019 FI_B 01167) by the Catalan Government. | ca_ES |
dc.identifier.doi | https://doi.org/10.3390/rs12223831 | |
dc.identifier.idgrec | 031229 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.uri | http://hdl.handle.net/10459.1/70194 | |
dc.language.iso | eng | ca_ES |
dc.publisher | MDPI | ca_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO//CGL2013-49142-C2-1-R/ES/EFECTOS DE LA BIODIVERSIDAD SOBRE LA EMISION DE GASES DE EFECTO INVERNADERO A LO LARGO DE GRADIENTES CLIMATICOS Y DE USO DEL SUELO EN PASTOS/ | ca_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-85490-R/ES/INTEGRACION MULTIESCALAR DE MODELOS E IMAGENES COMO HERRAMIENTA DE GESTION DE LA MULTIFUNCIONALIDAD EN SISTEMAS AGROPASTORALES DE MONTAÑA/ | ca_ES |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3390/rs12223831 | ca_ES |
dc.relation.ispartof | Remote Sensing, 2020, vol. 12, núm. 22, p. 3831 | ca_ES |
dc.rights | cc-by, (c) Ludwig et al., 2020 | ca_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Unmanned aerial systems | ca_ES |
dc.subject | Unmanned aerial vehicle | ca_ES |
dc.subject | Time series | ca_ES |
dc.subject | Accuracy | ca_ES |
dc.subject | Reproducibility | ca_ES |
dc.subject | Orthomosaic | ca_ES |
dc.subject | Validation | ca_ES |
dc.subject | Photogrammetry | ca_ES |
dc.title | Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS Orthomosaics | ca_ES |
dc.type | info:eu-repo/semantics/article | ca_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | ca_ES |