Enhancing the insertion of NOP instructions to obfuscate malware via deep reinforcement learning

dc.contributor.authorGibert Llauradó, Daniel
dc.contributor.authorFredrikson, Matt
dc.contributor.authorMateu Piñol, Carles
dc.contributor.authorPlanes Cid, Jordi
dc.date.accessioned2022-01-18T11:49:27Z
dc.date.available2022-01-18T11:49:27Z
dc.date.issued2022
dc.description.abstractCurrent state-of-the-art research for tackling the problem of malware detection and classification is centered on the design, implementation and deployment of systems powered by machine learning because of its ability to generalize to never-before-seen malware families and polymorphic mutations. However, it has been shown that machine learning models, in partidular deep neural networks, lack robustness against crafted inputs (adversarial examples). In this work, we have investigated the vulnerability of a state-of-the-art shallow convolutional neural network malware classifier against the deat code insertion technique. We propose a general framework powered by a Double Q-network to induce misclassification over malware families. The framework trains an agent through a convolutional neural network to select the optimal positions in a code sequence to insert dead code instructions so that the machine learning classifier mislabels the resulting executable. The experiments show that the proposed method significantly drops the classification accuracy of the classifier to 56.53% while having an evasion rate of 100% for the samples belonging to Kelihos_ver3, Simda, and Kelihos_ver1 families. In addition, the average number of instructions needed to mislabel malware in comparison to a random agent decreased by 33%.ca_ES
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847402. This research has been partially funded by the Spanish MICINN Projects TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, PID2019-111544GB-C22, and supported by the University of Lleida.ca_ES
dc.identifier.doihttps://doi.org/10.1016/j.cose.2021.102543
dc.identifier.idgrec031799
dc.identifier.issn0167-4048
dc.identifier.urihttp://hdl.handle.net/10459.1/72778
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO//TIN2015-71799-C2-2-P/ES/RAZONAMIENTO, SATISFACCION Y OPTIMIZACION: ARGUMENTACION Y PROBLEMAS/ca_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO//ENE2015-64117-C5-1-R/ES/IDENTIFICACION DE BARRERAS Y OPORTUNIDADES SOSTENIBLES EN LOS MATERIALES Y APLICACIONES DEL ALMACENAMIENTO DE ENERGIA TERMICA/ca_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111544GB-C22/ES/SISTEMAS DE INFERENCIA PARA INFORMACION INCONSISTENTE: ANALISIS ARGUMENTATIVO/ca_ES
dc.relation.isformatofVersió preprint del document publicat a https://doi.org/10.1016/j.cose.2021.102543ca_ES
dc.relation.ispartofComputers and Security, 2022, vol. 113, 102543ca_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/847402/EU/Career-FIT PLUS
dc.rights(c) Elsevier, 2021ca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.subjectMalware Classificationca_ES
dc.subjectAssembly Language Source Codeca_ES
dc.subjectObfuscationca_ES
dc.subjectReinforcement Learningca_ES
dc.subjectDeep Q-Networkca_ES
dc.titleEnhancing the insertion of NOP instructions to obfuscate malware via deep reinforcement learningca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.type.versioninfo:eu-repo/semantics/submittedVersionca_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
031799.pdf
Size:
579.09 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: