Dairy cattle slurry fertilization management in an intensive Mediterranean agricultural system to sustain soil quality while enhancing rapeseed nutritional value

Thumbnail Image
Bosch Serra, Àngela D.Bosch Serra, Àngela D. - ORCID ID
Yagüe Carrasco, María RosaYagüe Carrasco, María Rosa - ORCID ID
Valdez, Alcira Sunilda
Domingo Olivé, Francesc
Other authors
cc-by-nc-nd (c) Elsevier, 2020
Journal Title
Journal ISSN
Volume Title
Animal excreta are commonly recycled as fertilizers, although attention should be given to environmental impacts. Legislation must also be adapted to new research findings. The framework of this study is an intensive fodder Mediterranean agricultural system affected by EU legislation on the protection of waters against nitrate pollution. This paper studies the effect of two N based dairy cattle slurry (DCS) rates (170 vs. 250 kg N ha-1 yr-1) plus additional mineral N (up to 450 kg N ha-1 divided between two crops), on different soil quality parameters. A control (no N applied) was included. The experiment, which lasted for 8 years, included forage maize followed by ryegrass, grain maize and rapeseed. In the whole period, the organic carbon inputs from the DCS treatments comprised C slurry inputs (14.8 or 21.9 Mg ha-1) plus the C input difference in crop residues (8.3 Mg ha-1) between DCS and the control treatment. In the 0-0.3 m soil depth, slurries significantly increased soil organic carbon (SOC) from by 2.3 or 2.7% yearly (c. 2.8 Mg C with 10 Mg C ha-1 input) mainly in its light fraction. The size of the microbial biomass increased by 5.1% yearly (c. 0.12 Mg C with 10 Mg C ha-1 input). A higher aggregate stability against slaking disruption was observed. Soil pH slightly decreased, P (Olsen) fertility increased (up to 10 mg P kg-1) as did K availability (up to 140 mg K kg-1) and Mn and Ni bioavailability. In rapeseed plants, seed Ca, S, Cu and Mn content increased as did K, S, Fe, Mn and Zn in the rest of the plant biomass. These changes were within acceptable concentration ranges. The higher N rate from DCS has proved useful for the circular nutrient economy, while improving soil physical and chemical quality and the sustainability of the agricultural system as a whole.
Related resource
Journal or Serie
Journal of Environmental Management, 2020, vol. 273, p. 111092