Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories
Loading...
Files
Date
2022
Other authors
Impact
Journal Title
Journal ISSN
Volume Title
Abstract
Odometry is a simple and practical method that provides a periodic real-time estimation of
the relative displacement of a mobile robot based on the measurement of the angular rotational speed
of its wheels. The main disadvantage of odometry is its unbounded accumulation of errors, a factor
that reduces the accuracy of the estimation of the absolute position and orientation of a mobile robot.
This paper proposes a general procedure to evaluate and correct the systematic odometry errors of a
human-sized three-wheeled omnidirectional mobile robot designed as a versatile personal assistant
tool. The correction procedure is based on the definition of 36 individual calibration trajectories
which together depict a flower-shaped figure, on the measurement of the odometry and ground
truth trajectory of each calibration trajectory, and on the application of several strategies to iteratively
adjust the effective value of the kinematic parameters of the mobile robot in order to match the
estimated final position from these two trajectories. The results have shown an average improvement
of 82.14% in the estimation of the final position and orientation of the mobile robot. Therefore, these
results can be used for odometry calibration during the manufacturing of human-sized three-wheeled
omnidirectional mobile robots.
Citation
Journal or Serie
Applied Sciences, 2022, vol. 12, núm. 5, 2606