Universal centers in the cubic trigonometric Abel equation
Loading...
Date
2014
Other authors
Impact
Journal Title
Journal ISSN
Volume Title
Abstract
We study the center problem for the trigonometric Abel equation dρ/dθ=a1(θ)ρ2+a2(θ)ρ3,dρ/dθ=a1(θ)ρ2+a2(θ)ρ3, where a1(θ)a1(θ) and a2(θ)a2(θ) are cubic trigonometric polynomials in θθ. This problem is closely connected with the classical Poincaré center problem for planar polynomial vector fields. A particular class of centers, the so-called universal centers or composition centers, is taken into account. An example of non-universal center and a characterization of all the universal centers for such equation are provided.
Citation
Journal or Serie
Electronic Journal of Qualitative Theory of Differential Equations, 2014, núm. 1, p. 1-7