Integrability Conditions for Complex Homogeneous Kukles Systems
Loading...
Date
2018
Other authors
Impact
Journal Title
Journal ISSN
Volume Title
Abstract
In this paper we study the existence of local analytic first integrals for complex polynomial differential systems of the form ẋ = x + Pn(x, y), ẏ = −y, where Pn(x,y) is a homogeneous polynomial of degree n, called the complex homogeneous Kukles systems of degree n. We characterize all the homogeneous Kukles systems of degree n that belong to the Sibirsky ideal. Finally, we provide necessary and sufficient conditions when n = 2,...,7 in order that the complex homogeneous Kukles system has a local analytic first integral computing the saddle constants and using Gröbner bases to find the decomposition of the algebraic variety into its irreducible components.
Citation
Journal or Serie
Journal of Nonlinear Mathematical Physics, 2018, vol. 25, núm. 3, p. 387-398