Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Enginyeria Agroforestal
  • Comunicacions a congressos (Enginyeria Agroforestal)
  • View Item
  •   Home
  • Recerca
  • Enginyeria Agroforestal
  • Comunicacions a congressos (Enginyeria Agroforestal)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of geometric and structural parameters in a super-intensive almond (Prunus dulcis) orchard from multispectral vegetation indices derived from UAV-based imagery

Thumbnail
View/Open
Preprint (783.4Kb)
Issue date
2021
Author
Llorens Calveras, Jordi
Escolà i Agustí, Alexandre
Casañas, E.
Rosell Polo, Joan Ramon
Arnó Satorra, Jaume
Martínez Casasnovas, José Antonio
Suggested citation
Llorens Calveras, Jordi; Escolà i Agustí, Alexandre; Casañas, E.; Rosell Polo, Joan Ramon; Arnó Satorra, Jaume; Martínez Casasnovas, José Antonio; . (2021) . Estimation of geometric and structural parameters in a super-intensive almond (Prunus dulcis) orchard from multispectral vegetation indices derived from UAV-based imagery. Stafford, J.V. (ed.), Precision Agriculture’21. Wageningen Academic Publishers, Amsterdam (The Netherlands), pp 129-135. https://doi.org/10.3920/978-90-8686-916-9. http://hdl.handle.net/10459.1/84060.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
Canopy geometric and structural parameters in a super-intensive almond (Prunus dulcis) orchard were estimated from multispectral vegetation indices from very high-resolution UAV images (0.07 m/pixel). As ground truth data, the canopy geometric and structural parameters were extracted from a 3D LiDAR point cloud. These data were summarized every 0.5 m along the tree rows. The vegetation indices CCCI, NDRE, NDVI, GNDVI and WDRVI were calculated and summarized at the same points as the LiDAR data. The highest correlations (R>0.70) were obtained between the NDVI and the maximum width and the cross-sectional area. The porosity was negatively correlated (R=-0.59) with the NDVI. This research opens the opportunity of using remotely sensed vegetation indices to estimate canopy geometric and structural parameters in addition to vigour for precise canopy management.
URI
http://hdl.handle.net/10459.1/84060
DOI
https://doi.org/10.3920/978-90-8686-916-9_14
Is part of
Stafford, J.V. (ed.), Precision Agriculture’21. Wageningen Academic Publishers, Amsterdam (The Netherlands), pp 129-135. https://doi.org/10.3920/978-90-8686-916-9
European research projects
Collections
  • Comunicacions a congressos (Agrotecnio Center) [14]
  • Comunicacions a congressos (Medi Ambient i Ciències del Sòl) [13]
  • Publicacions de projectes de recerca del Plan Nacional [2958]
  • Comunicacions a congressos (Enginyeria Agroforestal) [19]

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to