Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Medi Ambient i Ciències del Sòl
  • Comunicacions a congressos (Medi Ambient i Ciències del Sòl)
  • View Item
  •   Home
  • Recerca
  • Medi Ambient i Ciències del Sòl
  • Comunicacions a congressos (Medi Ambient i Ciències del Sòl)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PlanetScope Vegetation Indices to Estimate UAV and LiDAR-derived Canopy Parameters in a Super-Intensive Almond Orchard

Thumbnail
View/Open
Postprint (489.1Kb)
Issue date
2022
Author
Sandonís Pozo, Leire
Plata Moreno, José Manuel
Llorens Calveras, Jordi
Escolà i Agustí, Alexandre
Pascual Roca, Miquel
Martínez Casasnovas, José Antonio
Suggested citation
Sandonís Pozo, Leire; Plata Moreno, José Manuel; Llorens Calveras, Jordi; Escolà i Agustí, Alexandre; Pascual Roca, Miquel; Martínez Casasnovas, José Antonio; . (2022) . PlanetScope Vegetation Indices to Estimate UAV and LiDAR-derived Canopy Parameters in a Super-Intensive Almond Orchard. 14th International Symposium FRUTIC 2022, June 29 – July 1, 2022, Valencia, Spain. http://hdl.handle.net/10459.1/84009.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
The continuous monitoring of geometric and structural parameters is a key aspect in sustainable and accurate orchard management. Although LiDAR and UAV photogrammetry are widely used to measure canopy architecture, there is still a gap to bridge in the development of software to process this information. The present work tries to estimate the maximum height and width in a hedgerow fruit tree orchard from PlanetScope vegetation indices (NDVI and GNDVI). To analyze the correspondence between geometric parameters and the vegetation indices, LiDAR and UAV point clouds were acquired on two 2021 dates in a super-intensive almond orchard: after mechanical pruning (June) and before harvesting (September). The 3D point clouds were summarized every 0.5 m and the maximum width and height along the rows were calculated and interpolated by means of block kriging to the pixel centroids of the PlanetScope image. These maps were later classified using a k means algorithm in two classes. Results indicate that the NDVI was the best performing index in estimation of maximum height and width on the two analyzed dates. GNDVI obtained its best results in September, when vegetation was fully developed. In conclusion, these vegetation indices could be useful for monitoring canopy geometry in this type of orchard, in particular to decide about pruning intensity.
URI
http://hdl.handle.net/10459.1/84009
Is part of
14th International Symposium FRUTIC 2022, June 29 – July 1, 2022, Valencia, Spain
European research projects
Collections
  • Comunicacions a congressos (Agrotecnio Center) [14]
  • Comunicacions a congressos (Grup de Recerca en AgròTICa i Agricultura de Precisió) [10]
  • Publicacions de projectes de recerca del Plan Nacional [2958]
  • Comunicacions a congressos (Hortofructicultura, Botànica i Jardineria) [6]
  • Comunicacions a congressos (Medi Ambient i Ciències del Sòl) [13]

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to