Gut microbes shape microglia and cognitive function during malnutrition

View/ Open
Issue date
2022Author
Bauer, Kylynda C.
York, Elisa M.
Cirstea, Mihai
Radisavljevic, Nina
Petersen, Charisse
Huus, Kelsey E.
Brown, Eric M.
Bozorgmehr, Tahereh
Bernier, Louis-Philippe
Lee, Amy H.Y.
Woodward, Sarah E.
Krekhno, Zakhar
Han, Jun
Hancock, Robert E.W.
MacVicar, Brian A.
Finlay, Barton Brett
Suggested citation
Bauer, Kylynda C.;
York, Elisa M.;
Cirstea, Mihai;
Radisavljevic, Nina;
Petersen, Charisse;
Huus, Kelsey E.;
...
Finlay, Barton Brett.
(2022)
.
Gut microbes shape microglia and cognitive function during malnutrition.
Glia, 2022, vol. 70, núm. 5, p. 820-841.
https://doi.org/10.1002/glia.24139.
Metadata
Show full item recordAbstract
Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.
Is part of
Glia, 2022, vol. 70, núm. 5, p. 820-841European research projects
Collections
The following license files are associated with this item: