Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Enginyeria Agroforestal
  • Articles publicats (Enginyeria Agroforestal)
  • View Item
  •   Home
  • Recerca
  • Enginyeria Agroforestal
  • Articles publicats (Enginyeria Agroforestal)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments

Thumbnail
View/Open
Postprint (5.854Mb)
Sol·licita una còpia
Issue date
2021-11-18
Author
Guevara, Javier
Gené Mola, Jordi
Gregorio López, Eduard
Auat Cheein, Fernando A.
Suggested citation
Guevara, Javier; Gené Mola, Jordi; Gregorio López, Eduard; Auat Cheein, Fernando A.; . (2021) . 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments. IEEE Sensors Journal, 2021. https://doi.org/10.1109/JSEN.2021.3129340.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications.
URI
http://hdl.handle.net/10459.1/72508
DOI
https://doi.org/10.1109/JSEN.2021.3129340
Is part of
IEEE Sensors Journal, 2021
European research projects
Collections
  • Articles publicats (Enginyeria Agroforestal) [367]
  • Articles publicats (Agrotecnio Center) [1190]
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió) [114]
  • Publicacions de projectes de recerca del Plan Nacional [2639]

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to