Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds

View/ Open
Issue date
2021-09-22Author
Gozalo-Marcilla, Miguel
Buntjer, Jaap
Johnsson, Martin
Batista, Lorena
Diez, Federico
Werner, Christian R.
Chen, Ching-Yi
Gorjanc, Gregor
Mellanby, Richard J.
Hickey, John M.
Suggested citation
Gozalo-Marcilla, Miguel;
Buntjer, Jaap;
Johnsson, Martin;
Batista, Lorena;
Diez, Federico;
Werner, Christian R.;
...
Ros Freixedes, Roger.
(2021)
.
Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds.
Genetics Selection Evolution, 2021, article núm. 76.
https://doi.org/10.1186/s12711-021-00671-w.
Metadata
Show full item recordAbstract
Background: Backfat thickness is an important carcass composition trait for pork production and is commonly included in swine breeding programmes. In this paper, we report the results of a large genome-wide association study for backfat thickness using data from eight lines of diverse genetic backgrounds. Methods: Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single-nucleotide polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p < 10-6 and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region was estimated using a ridge regression model. Results: We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six genomic regions were detected in three or more lines. The average estimate of the SNP-based heritability was 0.48, with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the additive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the additive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 candidate genes with annotated functions that can be related to fat metabolism, including well-studied genes such as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN. Conclusions: Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. The results also suggest that several less well-understood metabolic pathways contribute to backfat development, such as those of phosphate, calcium, and vitamin D homeostasis.
Is part of
Genetics Selection Evolution, 2021, article núm. 76European research projects
Collections
The following license files are associated with this item: