dc.contributor.author | Balbuena Martínez, Camino | |
dc.contributor.author | Dalfó, Cristina | |
dc.contributor.author | Martínez Barona, Berenice | |
dc.date.accessioned | 2020-07-02T09:05:56Z | |
dc.date.available | 2022-05-22T22:06:54Z | |
dc.date.issued | 2020-05-21 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.uri | http://hdl.handle.net/10459.1/69197 | |
dc.description.abstract | Given an integer ≥1, a (1, ≤ )-identifying code in a digraph is a dominating subset C of vertices such that all distinct subsets of vertices of cardinality at most have distinct closed in-neighborhoods within C . In this paper, we prove that every line digraph of min- imum in-degree one does not admit a (1, ≤ )-identifying code for ≥3. Then we give a characterization so that a line digraph of a digraph different from a directed cycle of length 4 and minimum in-degree one admits a (1, ≤2)-identifying code. The identifying number of a digraph D , −→ γID (D ) , is the minimum size of all the identifying codes of D . We establish for digraphs without digons with both vertices of in-degree one that −→ γID (LD ) is lower bounded by the number of arcs of D minus the number of vertices with out-degree at least one. Then we show that −→ γID (LD ) attains the equality for a digraph having a 1- factor with minimum in-degree two and without digons with both vertices of in-degree two. We finish by giving an algorithm to construct identifying codes in oriented digraphs with minimum in-degree at least two and minimum out-degree at least one. | |
dc.description.sponsorship | This research is supported by MICINN from the Spanish Government under project PGC2018-095471-B-I00 and partially by AGAUR from the Catalan Government under project 2017SGR1087 . The research of the second author has also been supported by MICINN from the Spanish Government under project MTM2017-83271-R. The second and third authors have received funding research and innovation programme under the Marie Sklodowska-Curie grant agree- ment No 734922. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095471-B-I00/ES/ESTUDIO MATEMATICO DE LOS FALLOS EN CASCADA EN SISTEMAS COMPLEJOS MEDIANTE INVARIANTES Y CENTRALIDADES EN GRAFOS. APLICACIONES A REDES REALES/ | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83271-R/ES/CRIPTOGRAFIA Y CODIGOS PARA APLICACIONES SEGURAS Y FIABLES/ | |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.amc.2020.125357 | |
dc.relation.ispartof | Applied Mathematics and Computation, 2020, vol. 383, p. 125357 | |
dc.rights | cc-by-nc-nd, (c) Elsevier, 2020 | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es | |
dc.subject | Line digraph | |
dc.subject | Identifying code | |
dc.subject | Dominating set | |
dc.subject | Separating set | |
dc.subject | 1-Factor | |
dc.title | Identifying codes in line digraphs | |
dc.type | info:eu-repo/semantics/article | |
dc.date.updated | 2020-07-02T09:05:56Z | |
dc.identifier.idgrec | 029991 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.identifier.doi | https://doi.org/10.1016/j.amc.2020.125357 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/734922/EU/CONNECT | |