Show simple item record

dc.contributor.authorGiné, Jaume
dc.contributor.authorLlibre, Jaume
dc.contributor.authorValls, Claudia
dc.date.accessioned2020-04-01T09:26:59Z
dc.date.available2020-04-01T09:26:59Z
dc.date.issued2019
dc.identifier.issn1072-6691
dc.identifier.urihttp://hdl.handle.net/10459.1/68403
dc.description.abstractWe characterize the centers of the Chiellini Hamiltonian Li´enard second-order differential equations x 0 = y, y 0 = −f(x)y − g(x) where g(x) = f(x)(k − α(1 + α) R f(x)dx) with α, k ∈ R. Moreover we study the phase portraits in the Poincar´e disk of these systems when f(x) is linear.ca_ES
dc.description.sponsorshipJ. Giné was partially supported by a MINECO/FEDER grant number MTM2017-84383-P and an AGAUR (Generalitat de Catalunya) grant number 2017SGR 1276. J. LLibre was partially supported by a FEDER-MINECO grant number MTM2016-77278-P, and an AGAUR grant number 2017SGR-1617. C. Valls was partially supported by FCT/Portugal through UID/MAT/04459/2013.ca_ES
dc.language.isoengca_ES
dc.publisherTexas State Universityca_ES
dc.relationMINECO/PN2013-2016/MTM2017-84383-Pca_ES
dc.relationMINECO/PN2013-2016/MTM2016-77278-Pca_ES
dc.relation.isformatofReproducció del document publicat a https://ejde.math.txstate.edu/Volumes/2019/71/abstr.htmlca_ES
dc.relation.ispartofElectronic Journal of Differential Equations, 2019, vol. 2019, núm. 71, p. 1–8.ca_ES
dc.rightscc-by (c) Texas State University, 2019ca_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLiénard systemca_ES
dc.subjectCenter-focus problemca_ES
dc.subjectFirst integralsca_ES
dc.titleChiellini Hamiltonian Liénard differential systemsca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.idgrec029042
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by (c) Texas State University, 2019
Except where otherwise noted, this item's license is described as cc-by (c) Texas State University, 2019