Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perturbed rank 2 Poisson systems and periodic orbits on Casimir invariant manifolds

Thumbnail
View/Open
Postprint (241.2Kb)
Issue date
2020-02-05
Author
García, I. A. (Isaac A.)
Hernández Bermejo, Benito
Suggested citation
García, I. A. (Isaac A.); Hernández Bermejo, Benito; . (2020) . Perturbed rank 2 Poisson systems and periodic orbits on Casimir invariant manifolds. Journal of Nonlinear Mathematical Physics, 2020, vol. 27, núm. 2, p. 295-307. https://doi.org/10.1080/14029251.2020.1700637.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
A class of n-dimensional Poisson systems reducible to an unperturbed harmonic oscillator shall be considered. In such case, perturbations leaving invariant a given symplectic leaf shall be investigated. Our purpose will be to analyze the bifurcation phenomena of periodic orbits as a result of these perturbations in the period annulus associated to the unperturbed harmonic oscillator. This is accomplished via the averaging theory up to an arbitrary order in the perturbation parameter ε. In that theory we shall also use both branching theory and singularity theory of smooth maps to analyze the bifurcation phenomena at points where the implicit function theorem is not applicable. When the perturbation is given by a polynomial family, the associated Melnikov functions are polynomial and tools of computational algebra based on Grobner basis are employed in order to ¨ reduce the generators of some polynomial ideals needed to analyze the bifurcation problem. When the most general perturbation of the harmonic oscillator by a quadratic perturbation field is considered, the complete bifurcation diagram (except at a high codimension subset) in the parameter space is obtained. Examples are given.
URI
http://hdl.handle.net/10459.1/67918
DOI
https://doi.org/10.1080/14029251.2020.1700637
Is part of
Journal of Nonlinear Mathematical Physics, 2020, vol. 27, núm. 2, p. 295-307
European research projects
Collections
  • Articles publicats (Matemàtica) [329]
  • Publicacions de projectes de recerca del Plan Nacional [2684]

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to