Show simple item record

dc.contributor.authorGarcía, I. A. (Isaac A.)
dc.date.accessioned2020-01-28T11:56:56Z
dc.date.available2020-12-01T23:13:10Z
dc.date.issued2019-10-07
dc.identifier.issn2199-675X
dc.identifier.urihttp://hdl.handle.net/10459.1/67895
dc.description.abstractWe consider polynomial families of real planar vector fields for which the origin is a monodromic nilpotent singularity having minimum Andree's number. There the centers are characterized by the existence of a formal inverse integrating factor. For such families we give, under some assumptions, global bounds on the maximum number of limit cycles that can bifurcate from the singularity under perturbations within the family.
dc.description.sponsorshipThe author is partially supported by the MINECO Grant Number MTM2017-84383-P and the AGAUR Grant Number 2017SGR-1276.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relationMINECO/PN2013-2016/MTM2017-84383-P
dc.relation.isformatofVersió postprint del document publicat a https://doi.org/10.1007/s40879-018-0304-3
dc.relation.ispartofEuropean Journal of Mathematics, 2019, vol. 5, núm. 4, p. 1293-1330
dc.rights(c) Springer, 2019
dc.subjectMonodromic singularity
dc.subjectNilpotent center
dc.titleCyclicity of Nilpotent Centers with Minimum Andreev Number
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2020-01-28T11:57:00Z
dc.identifier.idgrec028676
dc.type.versionacceptedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1007/s40879-018-0304-3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record