Show simple item record

dc.contributor.authorShestakova, Tatiana A.
dc.contributor.authorVoltas Velasco, Jordi
dc.contributor.authorSaurer, Matthias
dc.contributor.authorBerninger, Frank
dc.contributor.authorEsper, Jan
dc.contributor.authorAndreu-Hayles, Laia
dc.contributor.authorDaux, Valérie
dc.contributor.authorHelle, Gerhard
dc.contributor.authorLeuenberger, Markus
dc.contributor.authorLoader, Neil J.
dc.contributor.authorMasson‐Delmotte, Valérie
dc.contributor.authorSaracino, Antonio
dc.contributor.authorWaterhouse, John S.
dc.contributor.authorSchleser, Gerhard H.
dc.contributor.authorBednarz, Zdzisław
dc.contributor.authorBoettger, Tatjana
dc.contributor.authorDorado-Liñán, Isabel
dc.contributor.authorFilot, Marc
dc.contributor.authorFrank, David
dc.contributor.authorGrabner, Michael
dc.contributor.authorHaupt, Marika
dc.contributor.authorHilasvuori, Emmi
dc.contributor.authorJungner, Högne
dc.contributor.authorKalela‐Brundin, Maarit
dc.contributor.authorKrąpiec, Marek
dc.contributor.authorMarah, Hamid
dc.contributor.authorPawełczyk, S.
dc.contributor.authorPazdur, Anna
dc.contributor.authorPierre, Monique
dc.contributor.authorPlanells, Octavi
dc.contributor.authorPukienė, R.
dc.contributor.authorReynolds-Henne, Christina E.
dc.contributor.authorRinne‐Garmston(Rinne), Katja T.
dc.contributor.authorRita, Angelo
dc.contributor.authorSonninen, Eloni
dc.contributor.authorStiévenard, Michel
dc.contributor.authorSwitsur, Vincent R.
dc.contributor.authorSzychowska‐Krapiec, Elżbieta
dc.contributor.authorSzymaszek, Malgorzata
dc.contributor.authorTodaro, Luigi
dc.contributor.authorTreydte, Kerstin
dc.contributor.authorVitas, Adomas
dc.contributor.authorWeigl, Martin
dc.contributor.authorWimmer, Rupert
dc.contributor.authorGutiérrez, Emilia
dc.date.accessioned2020-01-15T12:57:00Z
dc.date.available2020-06-07T22:09:04Z
dc.date.issued2019
dc.identifier.issn1466-822X
dc.identifier.urihttp://hdl.handle.net/10459.1/67816
dc.description.abstractAim The aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70° N, 10° W‒35° E). Time period 1901‒2003. Major taxa studied Temperate and Euro‐Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf‐level gas exchange, inferred from indexed carbon isotope discrimination of tree‐ring cellulose (Δ13Ci). Results We find spatial autocorrelation for TRWi and Δ13Ci extending over a maximum of 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60° N in continental Europe. An increase in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying impacts of drought on tree performance. These effects are noticeable in drought‐prone biomes (Mediterranean, temperate and cold continental). Main conclusions At the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming‐induced effects of drought on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture‐sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe‐wide declines of forest carbon gain in the coming decades.
dc.description.sponsorshipSpanish Government, Grant/Award Number: AGL2015‐68274 ‐C3 ‐3‐R; Sixth Framework Programme, Grant/AwardNumber: EVK2‐2001 ‐00237; Seventh Framework Programme, Grant/AwardNumber: COST ‐STSM ‐ECOST ‐STSM ‐FP1304‐140915‐066395 and ERANET‐Mundus program (Grant agreement 20112573)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJohn Wiley & Sons Ltd
dc.relationMINECO/PN2013-2016/AGL2015-68274-C3-3-R
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1111/geb.12933
dc.relation.ispartofGlobal Ecology and Biogeography, 2019, vol. 28, p. 1295-1309
dc.rights(c) John Wiley & Sons Ltd, 2019
dc.subjectTree rings
dc.subjectCarbon isotopes
dc.subjectClimate change
dc.subjectDendroecology
dc.subjectEuropean forests
dc.titleSpatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2020-01-15T12:57:00Z
dc.identifier.idgrec029416
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1111/geb.12933


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record