Show simple item record

dc.contributor.authorLaguna Benet, Gerard
dc.contributor.authorVilarrubí, Montse
dc.contributor.authorIbáñez, Manuel
dc.contributor.authorBetancourt, Yina
dc.contributor.authorIlla i Alibés, Josep
dc.contributor.authorAzarkish, Hassan
dc.contributor.authorAmnache, Amrid
dc.contributor.authorCollin, Louis-Michel
dc.contributor.authorCoudrain, Perceval
dc.contributor.authorFréchette, L. G.
dc.contributor.authorBarrau, Jérôme
dc.date.accessioned2019-04-02T12:45:22Z
dc.date.available2020-11-05T23:28:07Z
dc.date.issued2018-11-05
dc.identifier.issn1359-4311
dc.identifier.urihttp://hdl.handle.net/10459.1/66129
dc.description.abstractThermal management in integrated chips is one of the major challenges on micro- and nanoelectronics. The rise of power density raised the need for microchannel liquid cooling solutions. This technology has poor temperature uniformity and requires high pumping powers. In this work, a cooling scheme aiming for high temperature uniformity and low pumping power is numerically studied. The cooling scheme consists in a matrix of microfluidic cells with thermally activated microvalves, which tailor the local coolant flow rates to avoid overcooling and improve the temperature uniformity. This system is assessed with steady state CFD studies combined with temporal integration in a time dependent and non-uniform heat load scenario. The studied cooling scheme improves, with respect to existing devices for similar applications, the chip temperature uniformity while reducing the pumping power by 50%.
dc.description.sponsorshipThe research leading to these results has been performed within the STREAMS project and received funding from the European Community's Horizon 2020 program under Grant Agreement No. 688564.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.applthermaleng.2018.08.030
dc.relation.ispartofApplied Thermal Engineering, 2018, vol. 144, p. 71-80
dc.rightscc-by-nc-nd, (c) Elsevier, 2018
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.subjectUniformidad de temperatura
dc.subjectSimulación numérica
dc.subjectDisipador de calor
dc.subjectMicrocanals
dc.subjectJet impactant
dc.titleNumerical parametric study of a hotspot-targeted microfluidic cooling array for microelectronics
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2019-04-02T12:45:22Z
dc.identifier.idgrec027967
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2018.08.030
dc.relation.projectIDInfo:eu-repo/grantAgreement/EC/H2020/688564/EU/STREAMS


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by-nc-nd, (c) Elsevier, 2018
Except where otherwise noted, this item's license is described as cc-by-nc-nd, (c) Elsevier, 2018