Enumerating super edge-magic labelings for the union of nonisomorphic graphs

Visualitza/ Obre
Data de publicació
2011Citació recomanada
Ahmad, Ali;
López Masip, Susana-Clara;
Muntaner Batle, F. A.;
Rius Font, Miquel;
.
(2011)
.
Enumerating super edge-magic labelings for the union of nonisomorphic graphs.
Bulletin of the Australian Mathematical Society, 2011, vol. 84, num. 2, p. 310-321.
https://doi.org/10.1017/S0004972711002292.
Metadades
Mostra el registre d'unitat completResum
A super edge-magic labeling of a graph G=(V,E) of order p and size q is a bijection f:V ∪E→{i}p+qi=1 such that: (1) f(u)+f(uv)+f(v)=k for all uv∈E; and (2) f(V )={i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv∈E(G) , u′,v′ ∈V (G) and dG (u,u′ )=dG (v,v′ )<+∞, then f(u)+f(v)=f(u′ )+f(v′ ). In this paper we introduce the concept of strong super edge-magic labeling of a graph G with respect to a linear forest F, and we study the super edge-magicness of an odd union of nonnecessarily isomorphic acyclic graphs. Furthermore, we find exponential lower bounds for the number of super edge-magic labelings of these unions. The case when G is not acyclic will be also considered.
És part de
Bulletin of the Australian Mathematical Society, 2011, vol. 84, num. 2, p. 310-321Projectes de recerca europeus
Col·leccions
Publicacions relacionades
Mostrant elements relacionats per títol, autor i matèria.
-
New problems related to the valences of (super) edge-magic labelings
López Masip, Susana-Clara; Muntaner Batle, F. A.; Rius Font, Miquel (2013)A graph G of order p and size q is edge-magic if there is a bijective function f : V (G) ∪ E(G) −→ {i} p+q i=1 such that f(x) + f(xy) + f(y) = k , for all xy ∈ E(G) . The function f is an edge-magic labeling of G and the ... -
Labeling constructions using digraph products
López Masip, Susana-Clara; Muntaner Batle, F. A.; Rius Font, Miquel (Elsevier, 2013)In this paper we study the edge-magicness of graphs with equal size and order, and we use such graphs and digraph products in order to construct labelings of different classes and of different graphs. We also study super ... -
Enumerating super edge-magic labelings for some types of path-like trees
López Masip, Susana-Clara; Muntaner Batle, F. A.; Rius Font, Miquel (University of Manitoba, 2015)The main goal of this paper is to use a variation of the Kronecker product of matrices in order to obtain lower bounds for the number of non isomorphic super edge-magic labelings of some types of pathlike trees. As a ...