Show simple item record

dc.contributor.authorDalfó, Cristina
dc.contributor.authorFiol, Miguel Angel
dc.contributor.authorMitjana, Margarida
dc.date.accessioned2019-02-04T08:21:08Z
dc.date.available2019-02-04T08:21:08Z
dc.date.issued2015
dc.identifier.issn2338-2287
dc.identifier.urihttp://hdl.handle.net/10459.1/65704
dc.description.abstractWe study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors).ca_ES
dc.language.isoengca_ES
dc.publisherIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesiaca_ES
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.5614/ejgta.2015.3.2.3ca_ES
dc.relation.ispartofElectronic Journal of Graph Theory and Applications, vol. 3, núm 2, p. 133-145ca_ES
dc.rightscc-by-sa (c) C. Dalfo et al., 2015ca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectDistance-regular graphca_ES
dc.subjectOdd graphca_ES
dc.subjectSpectrumca_ES
dc.titleOn Middle Cube Graphsca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.idgrec028094
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.identifier.doihttps://doi.org/10.5614/ejgta.2015.3.2.3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by-sa (c) C. Dalfo et al., 2015
Except where otherwise noted, this item's license is described as cc-by-sa (c) C. Dalfo et al., 2015