Show simple item record

dc.contributor.authorSantini, Filippo
dc.contributor.authorFerrio Díaz, Juan Pedro
dc.contributor.authorHereş, A. M.
dc.contributor.authorNotivol, Eduardo
dc.contributor.authorPiqué i Nicolau, Míriam
dc.contributor.authorSerrano Endolz, Luis
dc.contributor.authorShestakova, Tatiana A.
dc.contributor.authorSin Casas, Esther
dc.contributor.authorVericat, P.
dc.contributor.authorVoltas Velasco, Jordi
dc.date.accessioned2019-01-18T12:17:13Z
dc.date.available2019-10-23T22:21:55Z
dc.date.issued2018-10-23
dc.identifier.issn1612-4669
dc.identifier.urihttp://hdl.handle.net/10459.1/65553
dc.description.abstractWater and carbon fluxes in forests are largely related to leaf gas exchange physiology varying across spatiotemporal scales and modulated by plant responses to environmental cues. We quantified the relevance of genetic and phenotypic variation of intrinsic water-use efficiency (WUEi, ratio of net photosynthesis to stomatal conductance of water) in Pinus sylvestris L. growing in the Iberian Peninsula as inferred from tree-ring carbon isotopes. Inter-population genetic variation, evaluated in a provenance trial comprising Spanish and German populations, was low and relevant only at continental scale. In contrast, phenotypic variation, evaluated in natural stands (at spatial level) and by tree-ring chronologies (at temporal inter-annual level), was important and ten- and threefold larger than the population genetic variance, respectively. These results points to preponderance of plastic responses dominating variability in WUEi for this species. Spatial phenotypic variation in WUEi correlated negatively with soil depth (r = − 0.66; p < 0.01), while temporal phenotypic variation was mainly driven by summer precipitation. At the spatial level, WUEi could be scaled-up to ecosystem-level WUE derived from remote sensing data by accounting for soil water-holding capacity (r = 0.63; p < 0.01). This outcome demonstrates a direct influence of the variation of leaf-level WUEi on ecosystem water and carbon balance differentiation. Our findings highlight the contrasting importance of genetic variation (negligible) and plastic responses in WUEi (large, with changes of up to 33% among sites) on determining carbon and water budgets at stand and ecosystem scales in a widespread conifer such as Pinus sylvestris.
dc.description.sponsorshipThis work was supported by the Spanish Government [MINECO Grant Number AGL2015-68274-C3-3-R] and the Russian Science Foundation (Project Number 14-14-00219-P, mathematical approach). We acknowledge P. Sopeña and M.J. Pau for technical assistance and V. Muñoz, M. Sala and A. Teixidó for field sampling.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relationinfo:eu-repo/grantAgreement/MINECO//AGL2015-68274-C3-3-R/ES/APROXIMACIONES ECOFISIOLOGICAS Y RESPUESTA AL CLIMA EN PINOS MEDITERRANEOS: RELEVANCIA PARA LA GESTION FUTURA DE SUS RECURSOS GENETICOS/
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s10342-018-1145-9
dc.relation.ispartofEuropean Journal of Forest Research, 2018, vol. 137, núm. 6, p. 863-878
dc.rights(c) Springer-Verlag GmbH Germany, part of Springer Nature, 2018
dc.subjectGenetic variation
dc.subjectPhenotypic plasticity
dc.subjectPinus sylvestris
dc.subjectRemote sensing
dc.titleScarce population genetic differentiation but substantial spatiotemporal phenotypic variation of water‑use efficiency in Pinus sylvestris at its western distribution range
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2019-01-18T12:17:13Z
dc.identifier.idgrec027959
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1007/s10342-018-1145-9


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record