Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the multiple zeros of a real analytic function with applications to the averaging theory of differential equations

Thumbnail
View/Open
Postprint (441.4Kb)
Issue date
2018-11-21
Author
García, I. A. (Isaac A.)
Llibre, Jaume
Maza Sabido, Susanna
Suggested citation
García, I. A. (Isaac A.); Llibre, Jaume; Maza Sabido, Susanna; . (2018) . On the multiple zeros of a real analytic function with applications to the averaging theory of differential equations. Nonlinearity, 2018, vol. 31, p. 2666-2688. https://doi.org/10.1088/1361-6544/aab592.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
In this work we consider real analytic functions $d(z,\la,\e)$, where $d : \Omega \times \mathbb{R}^p \times I \to \Omega$, $\Omega$ is a bounded open subset of $\R$, $I \subset \mathbb{R}$ is an interval containing the origin, $\lambda \in \mathbb{R}^p$ are parameters, and $\e$ is a small parameter. We study the branching of the zero-set of $d(z,\la,\e)$ at multiple points when the parameter $\e$ varies. We apply the obtained results to improve the classical averaging theory for computing $T$-periodic solutions of $\lambda$-families of analytic $T$-periodic ordinary differential equations defined on $\mathbb{R}$, using the displacement functions $d(z,\la,\e)$ defined by these equations. We call the coefficients in the Taylor expansion of $d(z,\la,\e)$ in powers of $\e$ the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros $z_0 \in \Omega$ of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros $(z_0, \lambda)$ belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at $(z_0, \lambda)$. We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero $z_0$. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.
URI
http://hdl.handle.net/10459.1/65282
DOI
https://doi.org/10.1088/1361-6544/aab592
Is part of
Nonlinearity, 2018, vol. 31, p. 2666-2688
European research projects
Collections
  • Publicacions de projectes de recerca del Plan Nacional [2170]
  • Articles publicats (Matemàtica) [263]

Related items

Showing items related by title, author, creator and subject.

  • Period annulus of the harmonic oscillator with zero cyclicity under perturbations with a homogeneous polynomial field 

    García, I. A. (Isaac A.); Maza Sabido, Susanna (Bolyai Institute. University of SzegedHungarian Academy of Sciences, 2019-01-14)
    In this work we prove, using averaging theory at any order in the small perturbation parameter, that the period annulus of the harmonic oscillator has cyclicity zero (no limit cycles bifurcate) when it is perturbed by any ...
  • On the periodic orbit bifurcating from a Hopf bifurcation in systems with two slow and one fast variables 

    García, I. A. (Isaac A.); Llibre, Jaume; Maza Sabido, Susanna (Elsevier, 2014)
    The Hopf bifurcation in slow-fast systems with two slow variables and one fast variable has been studied recently, mainly from a numerical point of view. Our goal is to provide an analytic proof of the existence of the ...
  • Periodic orbits in Hyperchaotic Chen systems 

    Maza Sabido, Susanna (Texas State University, 2015)
    In this work, we show a zero-Hopf bifurcation in a Hyperchaotic Chen system. Using averaging theory, we prove the existence of two periodic orbits bifurcating from the zero-Hopf equilibria located at the origin of ...

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to