Show simple item record

dc.contributor.authorPascual, Adrián
dc.contributor.authorPukkala, Timo
dc.contributor.authorMiguel Magaña, Sergio de
dc.date.accessioned2018-07-19T09:46:06Z
dc.date.available2018-07-19T09:46:06Z
dc.date.issued2018-06
dc.identifier.issn1999-4907
dc.identifier.urihttp://hdl.handle.net/10459.1/64615
dc.description.abstractForest management planning is increasingly relying on airborne laser scanning (ALS) in forest inventory. The area-based method to interpret ALS data requires sample plots measured in the field. The aim of this study was to assess and trace the impacts of the positioning errors of field plots along the entire forest management planning process, from their effect on forest inventory results to the outcome of forest management planning. This research links plot positioning errors with the spatio-temporal allocation of forest treatments and calculates the inoptimality losses arising from plot positioning errors in ALS-based forest inventory. The study area was a forest management unit in Central Spain. Growing stock attributes were predicted for a grid of square-shaped cells. Alternative management schedules were simulated for the grid cells by using growth and yield models. Then, a spatial forest planning problem aiming at maximizing timber production with even-flow cuttings was formulated. Spatial objective variables were used to cluster management prescriptions into dynamic treatment units. We used simulated annealing to conduct spatial optimization. First, the true plot locations were used and then the whole process was repeated with normally distributed random errors with standard deviation equal to 2.5, 5 and 10 m, resulting in an average error of 1.47, 3.06 and 8.34 m, respectively. Increasing the level of positioning errors resulted in higher variability in the estimated growing stock attributes and in the achieved values of management goals. Sub-optimal prescriptions caused by the tested plot positioning errors caused up to 4.62% losses in timber production and up to 3.35% losses in utility. The losses increased with increasing plot positioning error.
dc.description.sponsorshipThis research was funded by the University of Eastern Finland, School of Forest Sciences and research consortium projects FORBIO (proj. 14970) and ADAPT (proj. 14907), funded by the Academy of Finland and led by Heli Peltola, at the School of Forest Sciences, University of Eastern Finland (UEF). Sergio de-Miguel was funded by the European Union’s Horizon 2020 MultiFUNGtionality Marie Skłodowska-Curie (IF-EF No. 655815)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/f9070371
dc.relation.ispartofForests, 2018, vol. 9, núm. 7, p. 1-15
dc.rightscc-by (c) Pascual et al., 2018
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectForest inventory
dc.subjectPrecision forestry
dc.subjectRemote sensing
dc.subjectDynamic treatment units
dc.subjectLiDAR
dc.titleEffects of plot positioning errors on the optimality of harvest prescriptions when spatial forest planning relies on ALS data
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2018-07-19T09:46:06Z
dc.identifier.idgrec027187
dc.type.versionpublishedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.3390/f9070371
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/655815/EU/MultiFUNGtionality


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by (c) Pascual et al., 2018
Except where otherwise noted, this item's license is described as cc-by (c) Pascual et al., 2018