Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Tesis Doctorals
  • View Item
  •   Home
  • Recerca
  • Tesis Doctorals
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for l-sections on genus two curves over finite fields and applications

Thumbnail
Access to documents
Issue date
2016-02-22
Author
Riquelme Faúndez, Edgardo
Other authors
Thériault, Nicolas
Ryom-Hansen, Steen
Pujolàs Boix, Jordi
Universitat de Lleida. Departament de Matemàtica
Suggested citation
Riquelme Faúndez, Edgardo. (2016) . Algorithms for l-sections on genus two curves over finite fields and applications. Universitat de Lleida. http://hdl.handle.net/10803/393881.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
We study \ell-section algorithms for Jacobian of genus two over finite fields. We provide trisection (division by \ell=3) algorithms for Jacobians of genus 2 curves over finite fields \F_q of odd and even characteristic. In odd characteristic we obtain a symbolic trisection polynomial whose roots correspond (bijectively) to the set of trisections of the given divisor. We also construct a polynomial whose roots allow us to calculate the 3-torsion divisors. We show the relation between the rank of the 3-torsion subgroup and the factorization of this 3-torsion polynomial, and describe the factorization of the trisection polynomials in terms of the galois structure of the 3- torsion subgroup. We generalize these ideas and we determine the field of definition of an \ell-section with \ell \in {3, 5, 7}. In characteristic two for non-supersingular hyperelliptic curves we characterize the 3-torsion divisors and provide a polynomial whose roots correspond to the set of trisections of the given divisor. We also present a generalization of the known algorithms for the computation of the 2-Sylow subgroup to the case of the \ell-Sylow subgroup in general and we present explicit algorithms for the computation of the 3-Sylow subgroup. Finally we show some examples where we can obtain the central coefficients of the characteristic polynomial of the Frobenius endomorphism reduced modulo 3 using the generators obtained with the 3-Sylow algorithm.
URI
http://hdl.handle.net/10459.1/64339
European research projects
Collections
  • Tesis Doctorals [1248]

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to