Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Tesis Doctorals
  • View Item
  •   Home
  • Recerca
  • Tesis Doctorals
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pharmacological blockade of voltage-gated calcium channels as a potential cardioprotective strategy

Thumbnail
Access to documents
Issue date
2014-07-29
Author
Pushparaj, Charumathi
Other authors
Cantí Nicolás, Carles
Pamplona Gras, Reinald
Universitat de Lleida. Departament de Medicina Experimental
Suggested citation
Pushparaj, Charumathi. (2014) . Pharmacological blockade of voltage-gated calcium channels as a potential cardioprotective strategy. Universitat de Lleida. L.1703-2014 ; http://hdl.handle.net/10803/285047.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Voltage-gated Ca2+ channels (VGCCs) are essential for initiating and regulating cardiac function. During the cardiac action potential, Ca2+ influx through L-type channels triggers the sarcoplasmic reticulum Ca2+ release that enables the EC coupling. Ca2+ can also enter cardiac myocytes through low-voltage-activated T-type channels, which are expressed throughout cardiac development until the end of the neonatal period, and can contribute to pacemaker activity as well as EC coupling to some extent. Importantly, T-type channels are re-expressed in ventricular myocytes under diverse pathological conditions such as ischemia or hypertrophy, suggesting that they play a role in cardiac disease. In a first part of this study, we examined the effects of VGCC blockers on the homeostasis and viability of primary cultures of cardiac myocytes (CMs), because of the importance of apoptosis and necrosis in cardiac disease. In a second part, we analyzed the cell mechanisms unleashed by hypoxic and hypertrophic stimuli, the involvement of VGCCs and the putative cytoprotective effects of VGCC blockade. Our results show that L-type and T-type channel blockers induce a low-level and transient ER stress, albeit with a distinct conveyance into cell macroautophagy and viability: whereas L-type channel blockers trigger a macroautophagic process in CMs, ultimately promoting apoptosis, T-type channel blockers exerts the opposite effect, by decreasing the autophagic flux and not affecting cell death. Furthermore, the blockade of T-type channels reduces Beclin-1-dependent autophagy and protects CMs subject to hypoxia-reoxygenation (as an in vitro paradigm for ischemia-reperfusion). We thus identify L-type and T-type channels as new targets for macroautophagy regulation of CMs, and provide new clues to the beneficial actions reported in clinical trials for T-type channel blockers, particularly against pathophysiological conditions involving a maladaptive autophagy.
URI
http://hdl.handle.net/10459.1/64153
European research projects
Collections
  • Tesis Doctorals [1319]

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to