Show simple item record

dc.contributor.authorBuset, Dominique
dc.contributor.authorLópez Lorenzo, Ignacio
dc.contributor.authorMiret, Josep M. (Josep Maria)
dc.date.accessioned2018-03-20T16:39:04Z
dc.date.available2018-03-20T16:39:04Z
dc.date.issued2017-11-02
dc.identifier.issn0219-2659
dc.identifier.urihttp://hdl.handle.net/10459.1/62848
dc.description.abstractA natural upper bound for the maximum number of vertices in a mixed graph with maximum undirected degree r, maximum directed out-degree z and diameter k is given by the mixed Moore bound. Graphs with order attaining the Moore bound are known as Moore graphs, and they are very rare. Besides, graphs with prescribed parameters and order one less than the corresponding Moore bound are known as almost Moore graphs. In this paper we prove that there is a unique mixed almost Moore graph of diameter k = 2 and parameters r = 2 and z = 1.
dc.description.sponsorshipTo our beloved friend Mirka Miller. She would love to see this result concerning mixed Moore graphs. Research of Nacho López and Josep M. Miret was supported in part by grants MTM2013-46949-P (Spanish Ministerio de Economa y Competitividad) and 2014SGR-1666 (Generalitat de Catalunya).
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWorld Scientific Publishing
dc.relationMINECO/PN2013-2016/MTM2013-46949-P
dc.relation.isformatofVersió preprint del document publicat a: https://doi.org/10.1142/S0219265917410055
dc.relation.ispartofJournal of Interconnection Networks, 2017, vol. 17, núm. 3, p. 1741005-1-1741005-10
dc.rights(c) World Scientific Publishing, 2017
dc.subjectMoore graph
dc.subjectMixed graph
dc.subjectDiameter
dc.titleThe unique mixed almost moore graph with parameters k = 2, r = 2 and z = 1
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2018-03-20T16:39:04Z
dc.identifier.idgrec026480
dc.type.versionsubmittedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1142/S0219265917410055


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record