Center conditions for generalized polynomial Kukles systems
Loading...
Date
2017
Other authors
Impact
Journal Title
Journal ISSN
Volume Title
Abstract
In this paper we study the center problem for certain generalized Kukles systems \[ \dot{x}= y, \qquad \dot{y}= P_0(x)+ P_1(x)y+P_2(x) y^2+ P_3(x) y^3, \] where $P_i(x)$ are polynomials of degree $n$, $P_0(0)=0$ and $P_0'(0) <0$. Computing the focal values and using modular arithmetics and Gr\'{o}bner bases we find the center conditions for such systems when $P_0$ is of degree $2$ and $P_i$ for $i=1,2,3$ are of degree $3$ without constant terms. We also establish a conjecture about the center conditions for such systems.
Citation
Journal or Serie
Communications On Pure And Applied Analysis, 2017, vol. 16, nĂºm. 2, p. 417-425