Show simple item record

dc.contributor.authorGiné, Jaume
dc.date.accessioned2017-11-10T14:20:46Z
dc.date.available2017-11-10T14:20:46Z
dc.date.issued2011
dc.identifier.issn2156-907X
dc.identifier.issn2158-5644
dc.identifier.urihttp://hdl.handle.net/10459.1/60470
dc.description.abstractAbstract In this short survey we discuss the narrow relation between the center problem and the Lie symmetries. It is well known that an analytic vector field X having a non–degenerate center has a non–trivial analytic Lie symmetry in a neighborhood of it, i.e. there exists an analytic vector field Y such that [X,Y] = μX. The same happens for a nilpotent center with an analytic first integral as can be seen from the recent results about nilpotent centers. From the recent results for nilpotent and degenerate centers it also can be proved that any nilpotent or degenerate center has a trivial smooth (of class C1) Lie symmetry. It remains as open problem if there always exists also a non–trivial Lie symmetry for any nilpotent and degenerate centerca_ES
dc.language.isoengca_ES
dc.publisherShanghai Normal University & Wilmington Scientific Publisherca_ES
dc.relation.isformatofReproducció del document publicat a: http://jaac.ijournal.cn/ch/reader/issue_browser.aspxca_ES
dc.relation.ispartofJournal Of Applied Analysis And Computation, 2011, vol. 1, núm. 4, p. 487–496ca_ES
dc.rightscc-by (c) Giné, 2011ca_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLie symmetriesca_ES
dc.subjectCenter problemca_ES
dc.subjectVector fieldsca_ES
dc.subject.otherMatemàticaca_ES
dc.titleLie symmetries and the center problemca_ES
dc.typearticleca_ES
dc.identifier.idgrec018130
dc.type.versionpublishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by (c) Giné, 2011
Except where otherwise noted, this item's license is described as cc-by (c) Giné, 2011