Lie symmetries and the center problem

View/ Open
Issue date
2011Suggested citation
Giné, Jaume;
.
(2011)
.
Lie symmetries and the center problem.
Journal Of Applied Analysis And Computation, 2011, vol. 1, núm. 4, p. 487–496.
http://hdl.handle.net/10459.1/60470.
Metadata
Show full item recordAbstract
Abstract In this short survey we discuss the narrow relation between the center problem and the Lie symmetries. It is well known that an analytic vector field X having a non–degenerate center has a non–trivial analytic Lie symmetry in a neighborhood of it, i.e. there exists an analytic vector field Y such that [X,Y] = μX. The same happens for a nilpotent center with an analytic first integral as can be seen from the recent results about nilpotent centers. From the recent results for nilpotent and degenerate centers it also can be proved that any nilpotent or degenerate center has a trivial smooth (of class C1) Lie symmetry. It remains as open problem if there always exists also a non–trivial Lie symmetry for any nilpotent and degenerate center
Is part of
Journal Of Applied Analysis And Computation, 2011, vol. 1, núm. 4, p. 487–496European research projects
Collections
The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Analytic integrability of some examples of degenerate planar vector fields
Algaba, Antonio; García, Cristóbal; Giné, Jaume (Springer, 2016)This paper is devoted to the classification of analytic integrable cases of two families of degenerate planar vector fields with a monodromic singular point at the origin. This study falls in the still open degenerate ... -
Contribution to the center and integrability problems in planar vector fields
Santallusia Esvert, Xavier (Universitat de Lleida, 2017-03-29) -
Discrete and continuous symetries in planar vector fields
Maza Sabido, Susanna (Universitat de Lleida, 2008-12-05)