Show simple item record

dc.contributor.authorFerrer, Gerard
dc.contributor.authorGschwander, Stefan
dc.contributor.authorSolé, Aran
dc.contributor.authorBarreneche Güerisoli, Camila
dc.contributor.authorFernández Renna, Ana Inés
dc.contributor.authorSchossig, Peter
dc.contributor.authorCabeza, Luisa F.
dc.date.accessioned2017-04-03T10:25:17Z
dc.date.available2019-06-01T22:09:48Z
dc.date.issued2017
dc.identifier.issn2352-152X
dc.identifier.urihttp://hdl.handle.net/10459.1/59421
dc.description.abstractThermal energy storage (TES) systems using phase change materials (PCM) are nowadays widely developed to be applied in solar power plants or cooling and domestic comfort services. The design of a TES system does not only rely on the energy density that a PCM can provide, but also on other important material properties such as its rheological behavior when the PCM is melted. Viscosity varies with temperature, but the lack of an empirical equation predicting its value has lead researchers to simulate the system performance taking constant viscosity values which, consequently, have led to errors on the designs. As paraffin are one of the most common PCM types used, the present paper evaluates the rheology of four commercial paraffin with different phase change temperatures in order to find out an empirical equation for the whole paraffin family. A polynomial 3 model type equation has been found as the best one to predict paraffin viscosity.
dc.description.sponsorshipThe work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and research group DIOPMA (2014 SGR 1543). The research leading to these results has received funding from RTC-2015-3583-5 (INPHASE) del Ministerio de Economía y Competitividad, dentro del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016, y ha sido cofinanciado con FONDOS FEDER, con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad, and from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 657466 (INPATH-TES). Dr. Camila Barreneche would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-22886.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relationMINECO/PN2013-2016/ENE2015-64117-C5-1-R
dc.relationMINECO/PN2013-2016/ENE2015-64117-C5-2-R
dc.relationMINECO/PN2013-2016/RTC-2015-3583-5
dc.relation.isformatofVersió postprint del document publicat a https://doi.org/10.1016/j.est.2017.03.002
dc.relation.ispartofJournal of Energy Storage, 2017, vol. 11, p. 154-161
dc.rightscc-by-nc-nd, (c) Elsevier, 2017
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEmpirical equation
dc.subjectViscosity
dc.subjectRheology
dc.subjectParaffin
dc.subjectThermal energy storage (TES)
dc.titleEmpirical equation to estimate viscosity of paraffin
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2017-04-03T10:25:17Z
dc.identifier.idgrec025462
dc.type.versionacceptedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1016/j.est.2017.03.002
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/610692
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/657466/EU/INPATH-TES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by-nc-nd, (c) Elsevier, 2017
Except where otherwise noted, this item's license is described as cc-by-nc-nd, (c) Elsevier, 2017