Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Producció Vegetal i Ciència Forestal
  • Articles publicats (Producció Vegetal i Ciència Forestal)
  • View Item
  •   Home
  • Recerca
  • Producció Vegetal i Ciència Forestal
  • Articles publicats (Producció Vegetal i Ciència Forestal)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of line-specific strategies for improving carotenoid production in synthetic maize through data-driven mathematical modeling

Thumbnail
View/Open
024200.pdf (1.512Mb)
Sol·licita una còpia
Issue date
2016
Author
Comas, Jorge
Benfeitas, Rui
Vilaprinyo Terré, Ester
Sorribas Tello, Albert
Solsona Tehàs, Francesc
Farré Martinez, Gemma
Berman Quintana, Judit
Zorrilla López, Uxue
Capell Capell, Teresa
Sandmann, Gerhard
Zhu, Changfu
Christou, Paul
Alves, Rui
Suggested citation
Comas, Jorge; Benfeitas, Rui; Vilaprinyo Terré, Ester; Sorribas Tello, Albert; Solsona Tehàs, Francesc; Farré Martinez, Gemma; ... Alves, Rui. (2016) . Identification of line-specific strategies for improving carotenoid production in synthetic maize through data-driven mathematical modeling. The plant journal, 2016, vol. 87, núm. 5, p. 455–471. https://doi.org/10.1111/tpj.13210.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize. With current technologies, production yields of the synthetic nutrients are a result of trial and error, and systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that combines gene expression and quantitative metabolomics with mathematical modeling to identify strategies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthesized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simulation of each model is used to predict which gene activities should be further engineered in order to increase production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing Zmlycb/Gllycb will increase accumulated β-carotenes) are valid across the four maize lines and consistent with experimental observations in other systems. Other predictions are line specific. The workflow is adaptable to any other biological system for which appropriate quantitative information is available. Furthermore, we validate some of the predictions using experimental data from additional synthetic maize lines for which no models were developed.
URI
http://hdl.handle.net/10459.1/59141
DOI
https://doi.org/10.1111/tpj.13210
Is part of
The plant journal, 2016, vol. 87, núm. 5, p. 455–471
European research projects
Collections
  • Articles publicats (IRBLleida) [1170]
  • Articles publicats (Producció Vegetal i Ciència Forestal) [856]
  • Publicacions de projectes de recerca del Plan Nacional [2958]
  • Articles publicats (Agrotecnio Center) [1330]
  • Articles publicats (Ciències Mèdiques Bàsiques) [583]
  • Grup de Recerca en Computació Distribuïda (INSPIRES) [58]
  • Publicacions de projectes finançats per la Unió Europea [761]
  • Articles publicats (Informàtica i Enginyeria Industrial) [990]

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to