Show simple item record

dc.contributor.authorGasull i Embid, Armengol
dc.contributor.authorGiné, Jaume
dc.date.accessioned2017-01-20T10:59:05Z
dc.date.issued2017
dc.identifier.issn0044-2275
dc.identifier.urihttp://hdl.handle.net/10459.1/59059
dc.description.abstractWe characterize the local analytic integrability of weak saddles for complex Lienard systems, x˙ = y−F(x), y˙ = ax, 0 = a ∈ C, with F analytic at 0 and F(0) = F (0) = 0. We prove that they are locally integrable at the origin if and only if F(x) is an even function. This result implies the well-known characterization of the centers for real Lienard systems. Our proof is based on finding the obstructions for the existence of a formal integral at the complex saddle, by computing the so-called resonant saddle quantitiesca_ES
dc.description.sponsorshipThe Armengol Gasull was supported by a MINECO Grant Number MTM2013-40998-P and by a CIRIT Grant Number 2014SGR568. The Jaume Gin´e was partially supported by a MINECO/ FEDER Grant Number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) Grant Number 2014SGR 1204.ca_ES
dc.language.isoengca_ES
dc.publisherSpringer International Publishingca_ES
dc.relationMINECO/PN2013-2016/MTM2013-40998-P
dc.relationMINECO/PN2013-2016/MTM2014-53703-P
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.1007/s00033-016-0756-6ca_ES
dc.relation.ispartofZeitschrift für angewandte Mathematik und Physik, 2017, vol. 68, núm. 13, p 1-13ca_ES
dc.rights(c) Springer International Publishing. 2016ca_ES
dc.subjectCenter problemca_ES
dc.subjectAnalytic integrabilityca_ES
dc.subjectWeak saddleca_ES
dc.subjectLíenard equationca_ES
dc.titleIntegrability of Liénard systems with a weak saddleca_ES
dc.typearticleca_ES
dc.identifier.idgrec025839
dc.type.versionpublishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_ES
dc.identifier.doihttps://doi.org/10.1007/s00033-016-0756-6
dc.date.embargoEndDate2025-01-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record