Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrability of Liénard systems with a weak saddle

Thumbnail
View/Open
025839.pdf (466.5Kb)
Sol·licita una còpia
Issue date
2017
Author
Gasull i Embid, Armengol
Giné, Jaume
Suggested citation
Gasull i Embid, Armengol; Giné, Jaume; . (2017) . Integrability of Liénard systems with a weak saddle. Zeitschrift für angewandte Mathematik und Physik, 2017, vol. 68, núm. 13, p 1-13. https://doi.org/10.1007/s00033-016-0756-6.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
We characterize the local analytic integrability of weak saddles for complex Lienard systems, x˙ = y−F(x), y˙ = ax, 0 = a ∈ C, with F analytic at 0 and F(0) = F (0) = 0. We prove that they are locally integrable at the origin if and only if F(x) is an even function. This result implies the well-known characterization of the centers for real Lienard systems. Our proof is based on finding the obstructions for the existence of a formal integral at the complex saddle, by computing the so-called resonant saddle quantities
URI
http://hdl.handle.net/10459.1/59059
DOI
https://doi.org/10.1007/s00033-016-0756-6
Is part of
Zeitschrift für angewandte Mathematik und Physik, 2017, vol. 68, núm. 13, p 1-13
European research projects
Collections
  • Articles publicats (Matemàtica) [264]
  • Publicacions de projectes de recerca del Plan Nacional [2180]

Related items

Showing items related by title, author, creator and subject.

  • Center problem for trigonometric Liénard systems 

    Gasull, Armengol; Giné, Jaume; Valls, Claudia (Elsevier, 2017)
    We give a complete algebraic characterization of the non-degenerated centers for planar trigonometric Liénard systems. The main tools used in our proof are the classical results of Cherkas on planar analytic Liénard systems ...
  • On the Integrability of Liénard systems with a strong saddle 

    Giné, Jaume; Llibre, Jaume (Elsevier, 2017)
    We study the local analytic integrability for real Li\'{e}nard systems, $\dot x=y-F(x),$ $\dot y= x$, with $F(0)=0$ but $F'(0)\ne0,$ which implies that it has a strong saddle at the origin. First we prove that this problem ...
  • Center problem for systems with two monomial nonlinearities 

    Gasull i Embid, Armengol; Giné, Jaume; Torregrosa, Joan (American Institute of Mathematical Sciences, 2016)
    We study the center problem for planar systems with a linear center at the origin that in complex coordinates have a nonlinearity formed by the sum of two monomials. Our first result lists several centers inside this family. ...

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to