Physical and Structural Changes in Liquid Whole Egg Treated with High-Intensity Pulsed Electric Fields

Thumbnail Image
Marco Molés, Raquel
Rojas Grau, María Alejandra
Hernando, Isabel
Pérez Munuera, Isabel
Soliva-Fortuny, RobertSoliva-Fortuny, Robert - ORCID ID
Martín Belloso, OlgaMartín Belloso, Olga - ORCID ID
Other authors
Journal Title
Journal ISSN
Volume Title
Abstract:  Liquid whole egg (LWE) is currently pasteurized through the application of heat; however, this treatment entails deleterious effects against some of the functional and technological properties of the product. In this study, the effect of high-intensity pulsed electric fields (HIPEF) processing (field strength: 19, 32, and 37 kV/cm) was compared to the traditional heat pasteurization (66 °C for 4.5 min). Different physical and structural characteristics of LWE, subjected or not to homogenization, were evaluated and compared, having the untreated LWE as a reference. Thermal treatment caused an increase in the viscosity of LWE, especially in nonhomogenized samples. HIPEF treatments did not modify the original color of LWE, whereas thermally treated samples developed an opaque appearance. LWE treated at 19 and 32 kV/cm exhibited a similar foaming capacity as fresh untreated egg, whereas thermal processing and PEF treatments of 37 kV/cm caused a substantial decrease in the foaming capacity of untreated liquid egg. Regarding the microstructure, the lipoprotein matrix appeared to be less affected by the HIPEF than by heat treatment if compared to the control. In addition, heat pasteurization had a significant impact on both the water-soluble protein content of the LWE samples (19.5% to 23.6% decrease) and the mechanical properties of the egg gels (up to 21.3% and 14.5% increase in hardness and cohesiveness, respectively). On the other hand, these parameters were not substantially affected in the HIPEF-treated samples. Heat-induced gels obtained from HIPEF-treated samples did not exhibit remarkable differences in the water-holding capacity (WHC) with respect to heat-pasteurized samples.
Journal or Serie
Journal of food science, 2011, vol. 76, núm. 2, p. C257–C264